
在Pandas中,时间序列(Time Series)是一种特殊的数据类型,用于处理时间相关的数据。Pandas提供了丰富的功能和方法,方便对时间序列数据进行处理和分析。下面是一些针对时间序列的常用操作:
方式① 使用to_datetime
创建时间序列:直接传入列表即可
import pandas as pd
# 将列表转换为时间戳
date_range = pd.to_datetime(['2024-01-01', '2024-01-02', '2024-01-03'])
date_range
DatetimeIndex(['2024-01-01', '2024-01-02', '2024-01-03'], dtype='datetime64[ns]', freq=None)
方式② 使用pd.date_range()
创建一段连续的时间范围:使用指定参数即可
import pandas as pd
date_range = pd.date_range(start='2024-01-01', end='2024-12-31', freq='D')
date_range
DatetimeIndex(['2024-01-01', '2024-01-02', '2024-01-03', '2024-01-04',
'2024-01-05', '2024-01-06', '2024-01-07', '2024-01-08',
'2024-01-09', '2024-01-10',
...
'2024-12-22', '2024-12-23', '2024-12-24', '2024-12-25',
'2024-12-26', '2024-12-27', '2024-12-28', '2024-12-29',
'2024-12-30', '2024-12-31'],
dtype='datetime64[ns]', length=366, freq='D')
其中,start是起始日期,end是结束日期,freq是频率,这里设置为'D'表示每天。
方式③ 使用Timestamp()
函数创建一个特定的时间戳:使用指定参数即可
import pandas as pd
timestamp = pd.Timestamp(year=2023, month=1, day=1, hour=12, minute=30, second=45)
timestamp
Timestamp('2023-01-01 12:30:45')
方式④ 使用 datetime 模块创建时间戳:使用指定参数即可
import pandas as pd
from datetime import datetime
timestamp = datetime(2023, 1, 1, 12, 30, 45)
print(timestamp)
2023-01-01 12:30:45
计算一下两个时间数据之差
import pandas as pd
# 创建两个固定时间
start_time = pd.Timestamp('2024-01-01 12:00:00')
end_time = pd.Timestamp('2024-01-02 14:30:00')
# 计算时间差
time_diff = end_time - start_time
time_diff
Timedelta('1 days 02:30:00')
一个固定时间加上pd.Timedelta
类型的时间差
pd.Timestamp('2024-01-02 14:30:00')+pd.Timedelta('1 days 02:30:00')
Timestamp('2024-01-03 17:00:00')
接下来,我们看看日期做索引的情况
将日期作为索引创建时间序列:
import pandas as pd
data = [1, 2, 3, 4, 5]
dates = pd.date_range(start='2024-01-01', periods=5, freq='D')
ts = pd.Series(data, index=dates)
ts
2024-01-01 1
2024-01-02 2
2024-01-03 3
2024-01-04 4
2024-01-05 5
Freq: D, dtype: int64
其中,periods是时间序列的长度,freq是频率,这里设置为'D'表示每天。
import pandas as pd
ts['2024-01-01']
1
使用日期范围进行切片:
import pandas as pd
ts['2024-01-01':'2024-01-05']
2024-01-01 1
2024-01-02 2
2024-01-03 3
2024-01-04 4
2024-01-05 5
Freq: D, dtype: int64
也可以使用切片操作对数据进行访问
import pandas as pd
ts[1:4]
2024-01-02 2
2024-01-03 3
2024-01-04 4
Freq: D, dtype: int64
时间序列的重采样: 将时间序列从高频率转换为低频率:
import pandas as pd
ts.resample('W').mean()
2024-01-07 3.0
Freq: W-SUN, dtype: float64
其中,'W'表示按周进行重采样,mean()表示计算每周的平均值。
时间序列的滚动计算: 计算滚动平均值:
import pandas as pd
ts.rolling(window=3).mean()
2024-01-01 NaN
2024-01-02 NaN
2024-01-03 2.0
2024-01-04 3.0
2024-01-05 4.0
Freq: D, dtype: float64
其中,window=3表示窗口大小为3,即计算每3个数据的平均值。
时间序列的时间偏移: 将时间序列向前或向后移动:
import pandas as pd
ts.shift(1)
2024-01-01 NaN
2024-01-02 1.0
2024-01-03 2.0
2024-01-04 3.0
2024-01-05 4.0
Freq: D, dtype: float64
其中,1表示向后移动1个时间单位。
在 Pandas 中,可以使用 dt 访问器来访问时间戳或时间序列中的各个时间部分,例如年、月、日、小时、分钟、秒等。通过使用 dt 访问器,你可以方便地提取和操作时间信息。
下面是一些常用的 dt 访问器的示例:
import pandas as pd
# 创建一个时间序列
timestamps = pd.Series(pd.date_range('2023-01-01', periods=5, freq='D'))
timestamps
0 2023-01-01
1 2023-01-02
2 2023-01-03
3 2023-01-04
4 2023-01-05
dtype: datetime64[ns]
# 提取年份
year = timestamps.dt.year
year
0 2023
1 2023
2 2023
3 2023
4 2023
dtype: int64
# 提取月份
month = timestamps.dt.month
month
0 1
1 1
2 1
3 1
4 1
dtype: int64
# 提取日期
day = timestamps.dt.day
day
0 1
1 2
2 3
3 4
4 5
dtype: int64
# 提取小时
hour = timestamps.dt.hour
hour
0 0
1 0
2 0
3 0
4 0
dtype: int64
# 提取分钟
minute = timestamps.dt.minute
minute
0 0
1 0
2 0
3 0
4 0
dtype: int64
# 提取秒数
second = timestamps.dt.second
second
0 0
1 0
2 0
3 0
4 0
dtype: int64
# 获取季度
quarter = timestamps.dt.quarter
quarter
0 1
1 1
2 1
3 1
4 1
dtype: int64
# 获取周数
week = timestamps.dt.isocalendar().week
week
0 52
1 1
2 1
3 1
4 1
Name: week, dtype: UInt32
# 获取星期几的名称
day_name = timestamps.dt.day_name()
day_name
0 Sunday
1 Monday
2 Tuesday
3 Wednesday
4 Thursday
dtype: object
# 获取该日期是一年中的第几天
day_of_year = timestamps.dt.dayofyear
day_of_year
0 1
1 2
2 3
3 4
4 5
dtype: int64
# 获取该日期是一周中的第几天(星期一为1,星期日为7)
day_of_week = timestamps.dt.dayofweek + 1
day_of_week
0 7
1 1
2 2
3 3
4 4
dtype: int64
# 获取该日期是一个月中的第几天
day_of_month = timestamps.dt.day
day_of_month
0 1
1 2
2 3
3 4
4 5
dtype: int64
# 获取该日期所在月份的最后一天
end_of_month = timestamps.dt.daysinmonth
end_of_month
0 31
1 31
2 31
3 31
4 31
dtype: int64
import pandas as pd
# 创建时间戳序列
ts = pd.Series(pd.to_timedelta(np.arange(10),unit='m'))
ts
0 0 days 00:00:00
1 0 days 00:01:00
2 0 days 00:02:00
3 0 days 00:03:00
4 0 days 00:04:00
5 0 days 00:05:00
6 0 days 00:06:00
7 0 days 00:07:00
8 0 days 00:08:00
9 0 days 00:09:00
dtype: timedelta64[ns]
# 提取时间戳中的秒数
seconds = ts.dt.seconds
seconds
0 0
1 60
2 120
3 180
4 240
5 300
6 360
7 420
8 480
9 540
dtype: int64
seconds = ts.dt.to_pytimedelta()
seconds
array([datetime.timedelta(0), datetime.timedelta(seconds=60),
datetime.timedelta(seconds=120), datetime.timedelta(seconds=180),
datetime.timedelta(seconds=240), datetime.timedelta(seconds=300),
datetime.timedelta(seconds=360), datetime.timedelta(seconds=420),
datetime.timedelta(seconds=480), datetime.timedelta(seconds=540)],
dtype=object)
以上是Pandas针对时间序列的一些常用操作和示例代码
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17