京公网安备 11010802034615号
经营许可证编号:京B2-20210330
交叉表显示了每个变量的不同类别组合中观察到的频率或计数。通俗地说,就是根据不同列的数据统计了频数
df = pd.DataFrame(
{ 'High': ["高", "高", "高", "中", "中", "中", "低", "低", "低", "高", "低"],
'Weight': ["重", "轻", "中", "中", "轻", "重", "重", "轻", "中", "重", "轻"]
})
df
pd.crosstab(df['High'], df['Weight'])
| Weight | 中 | 轻 | 重 |
|---|---|---|---|
| High | |||
| 中 | 1 | 1 | 1 |
| 低 | 1 | 2 | 1 |
| 高 | 1 | 1 | 2 |
双层crosstab
df = pd.DataFrame(
{ 'High': ["高", "高", "高", "中", "中", "中", "低", "低", "低", "高", "低"],
'Weight': ["重", "轻", "中", "中", "轻", "重", "重", "轻", "中", "重", "轻"],
'Size': ["大", "中", "小", "中", "中", "大", "中", "小", "小", "大", "小"]})
df
| High | Weight | Size | |
|---|---|---|---|
| 0 | 高 | 重 | 大 |
| 1 | 高 | 轻 | 中 |
| 2 | 高 | 中 | 小 |
| 3 | 中 | 中 | 中 |
| 4 | 中 | 轻 | 中 |
| 5 | 中 | 重 | 大 |
| 6 | 低 | 重 | 中 |
| 7 | 低 | 轻 | 小 |
| 8 | 低 | 中 | 小 |
| 9 | 高 | 重 | 大 |
| 10 | 低 | 轻 | 小 |
pd.crosstab(df['High'], [df['Weight'], df['Size']], rownames=['High'], colnames=['Weight', 'Size'])
| Weight | 中 | 轻 | 重 | |||
|---|---|---|---|---|---|---|
| Size | 中 | 小 | 中 | 小 | 中 | 大 |
| High | ||||||
| 中 | 1 | 0 | 1 | 0 | 0 | 1 |
| 低 | 0 | 1 | 0 | 2 | 1 | 0 |
| 高 | 0 | 1 | 1 | 0 | 0 | 2 |
另一种 宽表转长表 pd.wide_to_long()
np.random.seed(123)
df = pd.DataFrame({"A1970" : {0 : "a", 1 : "b", 2 : "c"},
"A1980" : {0 : "d", 1 : "e", 2 : "f"},
"B1970" : {0 : 2.5, 1 : 1.2, 2 : .7},
"B1980" : {0 : 3.2, 1 : 1.3, 2 : .1},
"X" : dict(zip(range(3), np.random.randn(3)))
})
df["id"] = df.index
df
| A1970 | A1980 | B1970 | B1980 | X | id | |
|---|---|---|---|---|---|---|
| 0 | a | d | 2.5 | 3.2 | -1.085631 | 0 |
| 1 | b | e | 1.2 | 1.3 | 0.997345 | 1 |
| 2 | c | f | 0.7 | 0.1 | 0.282978 | 2 |
把id 列用作标识列
pd.wide_to_long(df, ["A", "B"], i="id", j="year")
| X | A | B | ||
|---|---|---|---|---|
| id | year | |||
| 0 | 1970 | -1.085631 | a | 2.5 |
| 1 | 1970 | 0.997345 | b | 1.2 |
| 2 | 1970 | 0.282978 | c | 0.7 |
| 0 | 1980 | -1.085631 | d | 3.2 |
| 1 | 1980 | 0.997345 | e | 1.3 |
| 2 | 1980 | 0.282978 | f | 0.1 |
df = pd.DataFrame({
'famid': [1, 1, 1, 2, 2, 2, 3, 3, 3],
'birth': [1, 2, 3, 1, 2, 3, 1, 2, 3],
'ht1': [2.8, 2.9, 2.2, 2, 1.8, 1.9, 2.2, 2.3, 2.1],
'ht2': [3.4, 3.8, 2.9, 3.2, 2.8, 2.4, 3.3, 3.4, 2.9]
})
df
| famid | birth | ht1 | ht2 | |
|---|---|---|---|---|
| 0 | 1 | 1 | 2.8 | 3.4 |
| 1 | 1 | 2 | 2.9 | 3.8 |
| 2 | 1 | 3 | 2.2 | 2.9 |
| 3 | 2 | 1 | 2.0 | 3.2 |
| 4 | 2 | 2 | 1.8 | 2.8 |
| 5 | 2 | 3 | 1.9 | 2.4 |
| 6 | 3 | 1 | 2.2 | 3.3 |
| 7 | 3 | 2 | 2.3 | 3.4 |
| 8 | 3 | 3 | 2.1 | 2.9 |
把famid, birth 两列用作标识列
l = pd.wide_to_long(df, stubnames='ht', i=['famid', 'birth'], j='age')
l
| ht | |||
|---|---|---|---|
| famid | birth | age | |
| 1 | 1 | 1 | 2.8 |
| 2 | 3.4 | ||
| 2 | 1 | 2.9 | |
| 2 | 3.8 | ||
| 3 | 1 | 2.2 | |
| 2 | 2.9 | ||
| 2 | 1 | 1 | 2.0 |
| 2 | 3.2 | ||
| 2 | 1 | 1.8 | |
| 2 | 2.8 | ||
| 3 | 1 | 1.9 | |
| 2 | 2.4 | ||
| 3 | 1 | 1 | 2.2 |
| 2 | 3.3 | ||
| 2 | 1 | 2.3 | |
| 2 | 3.4 | ||
| 3 | 1 | 2.1 | |
| 2 | 2.9 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01