京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师职业道德和行为准则是基于 CDA价值观(开放、创新、分享)基础上,对各行业数据科学从业者制定的职业道德操守与专业行为规范。 自21世纪以来,技术更替驱动企业变革,科技发展改善人类生活,在大数据(DT)、人工智能(AI)时代趋势下,新一批高要求、 高标准的专业技术岗位如雨后春笋般不断涌现。CDA职业道德和行为准则分别在道德操守和专业行为两个方面对数据科学从业者制定了规范化的标准, 并致力于成为衡量数据科学行业人才职业水平的典范。
无论从业者的文化水平、职业背景、工作地域有何差异,CDA数据分析师(包括CDA持证人、CDA会员)都必须遵守准则中的各项要求, 并以身作则影响并监督更多身边从业者的道德与行为,提升整个数据科学行业的开放性、创新性、分享性,使其更具生命力。 通过长期坚守CDA职业道德和行为准则,从业者和企业将会更加明智,做出更科学、更合理的决策,从而远离误区,降低风险。 个体与集体也更具诚信度,拥有更多广泛、跨界的合作机会,从而实现更大商业价值。
本职业道德与行为准则适用于CDA数据分析师持证人、CDA会员、CDA合作伙伴及各界数据科学相关岗位从业者。
第一条 坚持诚信、公平、尊重、敬业的原则,以符合一般公民素质与职业道德的要求对待所属行业领域的公众、用户、客户、雇主、同事以及其他同行参与者。
第二条 遵守由国家、政府、监管组织颁布的各项法律法规,遵守所在机构制定的员工制度或业务规范,遵法守纪,严于律己。
第三条 维护所在机构及企业客户的品牌形象和口碑,维护数据科学应用领域及相关行业的声誉,忠于职守,勤勉尽责,保护机构的合法利益。
第四条 将数据产权、用户利益和机构利益置于个人利益之上,保护数据资产的安全性,遵循数据的真实性、可靠性,禁止技术欺诈、数据造假、非法交易,损害用户和机构利益。
第五条 保持和加强自身职业道德操守以及同行的操守。不参与任何违法行为,包括但不限于:偷窃、欺骗、腐败、挪用或贿赂;不使用或滥用他人的产权,包括数据资产、知识产权;不参与诽谤和侮辱;不宽恕或帮助他人参与违法行为。
第一条 遵照并履行所在机构的业务制度与规范。具有诚信、严谨、积极的职业态度,保持独立、客观、专业的分析判断,能根据业务要求做出有计划、有评估、可实施的报告或决策,实事求是,言行一致,精益求精。
第二条 保守商业机密与维护机构利益。不得从事与机构利益相冲突的第二职业,不得涉嫌盗卖、泄漏、欺诈或舞弊的专业行为,或做出与数据分析相背离的行为;保守企业的商业秘密、数据隐私和知识产权。
第三条 保护数据资产与尊重数据产权。不得未经同意使用他人产权、获取其他机构数据、交易数据等违法行为;不得捏造虚假数据,篡改数据、使用不具代表性的样本数据;不得为了完成任务或达成某项目的而有损专业名誉。
第四条 专业、审慎、高效完善各项业务流程。
(一)保证数据的合法性、时效性、全面性。全面了解业务背景、痛点、需求,做出分析建议,与团队充分沟通,确定合理的业务指标,获取符合要求的源数据。
(二)保持工具与算法的前沿性、适用性、高效性。根据业务需要,选择合理的工具、平台、系统及算法,保障数据的高效处理与建模分析。
(三)不断迭代并优化业务指标与数据模型,使研究结果更具解释性,预测性、可行性。
(四)撰写专业可视化报告,逻辑清晰展示项目成果,并做出具有商业价值的建议。
第五条 尊重契约完整交付分析结果。遵守合同、协议、补充说明、任务制度等相关约定,按时按质交付工作成果,并对相关数据、代码、结果进行保密。不得随意变更约定内容,不得拖延、敷衍工作结果,不得私下收取其他额外费用。
第六条 履行后期义务与责任。完整交付结果后,对客户须进行后期解答、咨询、维护等服务;对机构业务须进行后期跟进、优化、指导建议等工作;善于自我总结、反思、提升。
第七条 维护专业与行业声誉。自觉保持数据相关专业、岗位的专业性,维护机构、客户所在企业与行业声誉,维护CDA数据分析师证书名誉。不得从事任何有损数据相关岗位、机构、行业及CDA品牌声誉与诚信的行为;不得曲解或夸大数据科学、机构行业、CDA证书的意义或含意。
第八条 关注时事自我提升。秉承开放、创新、分享理念,勇于分享,敢于创新,与时俱进。须关注数据科学的最新研究结果、时事,了解不同领域工具与算法的变化、更新,了解行业最新产品、前沿应用,并保持自身技能的不断提升。
第九条 肩负使命,创造与传播。怀有用数据改变社会的信仰,坚守CDA职业道德与行为准则,肩负普及、推广、传播数据科学知识的使命,勇于试错、突破、创造,将数据科学价值发挥至各行各业。
第十条 CDA职业道德与行为准则由CDA数据科学研究院、CDA考试中心负责解释。此准则自发布之日起施行。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23