
在知识星球里,很多同学问:“如何做出优秀的数据分析项目?不然简历和年终总结都不知道咋写”。我都做了详尽的回答和跟进,今天总结分享一下大家提到的共性问题。
想做好数据分析类项目,主要靠的是:树立正确的观念。这里有5道测试题,一起来测一测自己有多大可能做出好项目。
题目一(单选题)
数据分析项目好坏的衡量指标是:
A、时间、成本、质量B、算法难度、统计学知识、数学公式
这个题目是最重要的观念,直接决定了一个数据分析师在当前公司混得好还是坏。数据分析工作有它的特殊性:
★ 它不同于销售,不能直接为公司创收。★ 它不同于运营,不能直接拉升活跃留存付费指标。★ 它不同于交易/网站/ERP系统的开发,这些系统是业务必需的支撑。★ 它不同于DBA,没有DBA的公司不存在,没有专职分析师的公司大把。
题目二(排序题)
以下人员,对数据分析项目质量的话语权为:
A、业务部门领导B、数据部门领导C、业务部门员工D、数据部门员工(本人)
如果问题一吃透了,这个题毫无难度,答案是A≥B≥C≥≥D。领导意见大于员工意见,如果业务部门领导首肯,数据部门领导就直接应声附和了。如果业务部门领导不发声,那就看数据部门领导是不是认可。本人的“觉得我做得很牛逼”,毫无意义,切记切记。
请注意,有时会有业务领导和数据领导态度不一致的情况,这时候以自己直接领导的态度为准,外部门稍后考虑。在大部分企业,直接领导是决定自己绩效评分的那个,所以一定不能得罪。
题目三(排序题)
请对以下五种项目成果,按质量高低排序:
A、可视化的数据产品B、每月定期输出的数据模型C、部门级以上会议的汇报pptD、无群体汇报的pptE、Excel数据表F、无固定格式的数字G、写sql跑完数口头告诉业务
这个题完全解释需要一整篇文章,但同学们可以用望文生义的办法,直接作出回答,答案是:A=B≥C≥D=E≥F≥≥G。
数据分析的成果很容易被人当夜壶:用得时候很爽,用完了就忘了。平时还嫌你脏:你看我不就是要个数字吗!还要跑那么久!
题目四(单选题)
今天是11月11日中午12点,你的领导说,下班前给一个预计,预测一下双十一我们业绩能去到多少,你怎么做?
A、立马回去建模,时间序列、XGboost搞起B、回去找运营要推广费用使用情况,算个投入产出比来拍C、回去看下上午数据,根据去年同期拍一个
这个题非常有迷惑性。特别是刚看完上一题,很多同学会惯性选A。这个题的题眼不是“预测”而是“中午12点到下班”。
数据分析可以建模、可以做BI、可以做可视化,但是通通需要时间,而很多情况下,业务不等人,必须快速给出结果。这时候要优先选简单直接的办法,并结合数据提示风险。
题目五(多选题)
数据分析的工作成本由什么构成?
A、数据库成本B、电脑成本C、开发软件成本D、BI产品成本E、数据采集质量F、数据清洗质量G、程序员工作时间
这个题也非常非常有迷惑性,如果在陈老师问之前,很多人都压根没想过:“做数据分析还有成本啊??!!”“这玩意不是一个饱读《机器学习》《统计学》《21天精通python》的人敲敲键盘就搞掂的吗??!!”
答,数据分析肯定有成本,而且最大的成本是数据质量,好数据才有好分析,垃圾数据垃圾分析。特别是数据采集,业务流程漏洞百出,业务管理不规范,埋点不做好就上线,基础数据脏乱差,分析个屁。为了取得好的教学效果,这里用了5个最常犯错的题目。目的就是让大家记住做出优秀数据分析项目的五个要点。
文章来源于接地气的陈老师 ,作者接地气的陈老师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22