
每年6月与12月,来自全国各地的考生在20多所城市进行严格统考,获取专业技能,拿到高金证书。第十届CDA数据分析师认证考试现已结束,本次考试共进行了LEVEL 1业务数据分析师,LEVEL 2建模分析师,LEVEL 2大数据分析师、LEVEL 3数据科学家(第一阶段)四门科目。
经过简要的数据分析,CDA数据分析研究院发布本次考试的通过率及考生数据报告:
CDA数据分析师第十届通过率:
解读:本届考试通过率及成绩情况
· LEVEL 1 通过率为65%(其中成绩A占比4%,成绩B占比18%,成绩C占比43%)
· LEVEL 2 建模分析师通过率为46%(其中成绩A占比11%,成绩B占比16%,成绩C占比19%)
· LEVEL 2 大数据分析师通过率为52%(其中成绩A占比4%,成绩B占比16%,成绩C占比32%)
以往十届CDA认证考试通过率情况:
第十届CDA认证考试考生地区分布:
第十届CDA认证考试考生专业分布:
解读:
根据考生的专业字段进行了整理分析,可以看出考生的专业分布比较分散,其中数学与统计专业的考生占比最多,为21.9%;其次为工程类专业占比13.21%,经济与金融占比12.75%,信息类占比12.75%,计算机学科占比11.12%,四个专业相差不大。其他还包括管理类、财会、物流、电商、机械、医学、社科、旅游等专业。
第十届CDA认证考试考生工作年限情况:
第十届CDA认证考试考生岗位分布:
解读:
此数据为综合了本届考试所有考生的岗位信息,进行了数据的整理和分类,删除了空缺值,得出了考生从业岗位的占比情况。
可见数据分析岗位占比最多,接近一半的考生都是从事数据相关类工作;IT技术类岗位其次,占比21.03%;产品经理、项目经理、主管总监类相关岗位随后,总占比16.25%。其他还包括市场、营销、运营类岗位;财务、投资等金融类岗位。
基本证明了对于大多数还在数据类岗位的从业人员都急需一个专业能力的提升和认可,获得CDA证书也将是在自己现有职位往更高职位或平台的一个跳板。在IT岗的一些工程师欲获得CDA证书,转行从事数据岗位。而在管理、运营、产品、市场等岗位,也有较大的数据分析技能需求。
第十届CDA认证考试考生来自:(知名企业一览)
解读:
以上是筛选了考生来自的所有企业单位,列出的知名企业名单,包括外企、国企、私企、政府部门等。可看出这些优质企业,500强企业,政府部门的员工也需要CDA技能,参与CDA认证考试,获得证书。也说明CDA持证人遍布在这些企业单位,接触着最前沿的数据技术。
最后,附上本届各等级考试优秀考生榜单:
恭喜以上考生获得优异成绩!!
后续更多优秀考生及状元采访秀,敬请持续关注我们的最新消息,也可以关注我们的微信公众号「CDA数据分析师」!
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30