
作者:俊欣
来源:关于数据分析与可视化
今天小编来和大家分享一下Python在图像处理当中的具体应用,那既然是图像处理,那必然要提到opencv模块了,该模块支持与计算机视觉和机器学习相关的众多算法,并且应用领域正在日益扩展,大致有以下几种领域
当然这次小编并不打算将这么高深的内容,今天就从最基本的opencv模块在图像的基本操作上说起
模块的安装我们通过都是通过pip命令来进行的
pip install opencv-python pip install opencv-contrib-python
学过线性代数的肯定怼矩阵并不感到陌生。图像本质上来说就是矩阵,灰度图像是一个普通的矩阵,而彩色图像就是一个多维矩阵,我们对于图像的操作可以自然地转换成是对矩阵的操作
首先我们先来读取图像,调用的是cv2.imread()方法,它的语法格式如下
cv2.imread(filename, flag=1)
其中的flag参数是用来设置读取图像的格式,默认的是1,表示为按照RGB三通道的格式来进行读取,如果设置成0,则表示以灰度图单通道的方式来进行读取,
import cv2 import numpy as np
img=cv2.imread('1.jpg', 0)
在读取图片之后,我们希望能够将其展示出来,这里用到的函数方法是cv2.imshow(),它的语法格式如下所示
cv2.imshow(name, img)
其参数解释分别如下:
我们尝试将上面读取的图片展示出来,代码如下
cv2.imshow("grey_img", img)
## 如果使用了cv2.imshow()函数,下面一定要跟着一个摧毁窗口的函数 cv2.destroyAllWindows()
当我们运行了上述的代码之后,可以发现在一瞬间当中图片弹了出来,但是还没有等我们看清楚图片的样子之后就直接关闭了,原因在于cv2.imshow()函数方法并没有延时的作用,我们添加一个延时的函数,代码如下
import cv2 import numpy as np
img = cv2.imread('1.jpg')
cv2.imshow("grey_img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
output
最后我们将图片保存下来,这里用到的函数是cv2.imwrite(),它的语法格式如下
cv2.imwrite(imgname, img)
其参数解释分别如下:
示例代码如下
import cv2 import numpy as np
img = cv2.imread('1.jpg')
cv2.imshow("grey_img", img)
cv2.waitKey(0)
cv2.imwrite('1.png', img)
cv2.destroyAllWindows()
有时候我们想要知道图片的像素大小,而图片的本质是矩阵,例如一张1024像素*960像素的图片,就意味着在矩阵当中的行数就是960行,列数是1024列,在opencv模块当中调用的shape()函数方法,代码如下
import cv2
img = cv2.imread('1.jpg') print(img.shape[0]) # 行数 print(img.shape[1]) # 列数 print(img.shape[2]) # 通道数
output
308 340 3
可以看到该图片的像素是340*380,通道数是3,而针对灰度图像而言,我们来看一下图片的属性,代码如下
img = cv2.imread('1_grey.png', 0) print(img.shape)
output
(308, 340)
可以看到对于灰度图像而言,我们就没有看到通道数,只有行数和列数
最后我们来对图像进行一些基本操作,无非就是改变当中的一些像素值,我们导入一张空白的图片,通过修改当中的像素值来往里面添加一个黑点,代码如下
import cv2 import numpy as np
img = cv2.imread('2.jpg')
(x, y, z) = img.shape for i in range(-10, 10): for j in range(-10, 10):
# 图片的正中心的位置来改变像素值,
img[int(x/2) + i, int(y/2) + j] = (0, 0, 0)
cv2.imshow("img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10