
作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天有个粉丝【Lethe】问了一道Pyecharts可视化的问题,如下图所示。
后来原始数据和代码都给到了,需要帮忙看看。
下面是她自己的代码,如下所示:
# 可视化部分 import pandas as pd from pyecharts.charts import Map, Page from pyecharts import options as opts # 设置列对齐 pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True) # 打开文件 df = pd.read_excel('D:python-basepython实训项目文档国内疫情统计表1.xlsx')
locations = [location for location in df['省']]
values = [value for value in df['当前确诊']]
datas1 = list(zip(locations, values))
data2 = df['省']
data2_list = list(data2) # print(data2_list) data3 = df['当前确诊']
data3_list = list(data3) # print(data3_list) data4 = df['疑似确诊']
data4_list = list(data4)
data5 = df['累计确诊']
data5_list = list(data5)
data6 = df['死亡人数']
data6_list = list(data6)
data7 = df['治愈人数']
data7_list = list(data7)
a = (
Map()
.add("当前确诊", datas1, "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=100),
)
)
b = (
Map()
.add("疑似确诊", [list(z) for z in zip(data2_list, data4_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
c = (
Map()
.add("累计确诊", [list(z) for z in zip(data2_list, data5_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
d = (
Map()
.add("死亡人数", [list(z) for z in zip(data2_list, data6_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
e = (
Map()
.add("治愈人数", [list(z) for z in zip(data2_list, data7_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
page = Page(layout=Page.DraggablePageLayout)
page.add(
a,
b,
c,
d,
e,
) # 先生成render.html文件 page.render() # 完成上一步之后把 page.render()这行注释掉 # 然后循行这下面 '''
Page.save_resize_html("render.html",
cfg_file="chart_config.json",
dest="my_test.html")
'''
后来【此类生物】修改了下代码,顺利解决了问题,代码如下所示。
# 可视化部分 import pandas as pd from pyecharts.charts import Map, Page from pyecharts import options as opts # 设置列对齐 pd.set_option('display.unicode.ambiguous_as_wide', True)
pd.set_option('display.unicode.east_asian_width', True) # 打开文件 df = pd.read_excel('国内疫情统计表1.xlsx')
locations = [] for location in df['省']: if "广西" in location:
location = "广西" if "新疆" in location:
location = "新疆" if "宁夏" in location:
location = "宁夏" if "西藏" in location:
location = "西藏" if "内蒙古" in location:
location = "内蒙古" else:
location = location.strip("省市")
locations.append(location)
values = [value for value in df['当前确诊']]
print(values, locations)
datas1 = list(zip(locations, values)) # data2 = locations
data2_list = list(data2)
print(data2_list)
data3 = df['当前确诊']
data3_list = list(data3) # print(data3_list) data4 = df['疑似确诊']
data4_list = list(data4)
data5 = df['累计确诊']
data5_list = list(data5)
data6 = df['死亡人数']
data6_list = list(data6)
data7 = df['治愈人数']
data7_list = list(data7) # # # a = (
Map()
.add("当前确诊", datas1, "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=100),
)
) # # # b = (
Map()
.add("疑似确诊", [list(z) for z in zip(data2_list, data4_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
c = (
Map()
.add("累计确诊", [list(z) for z in zip(data2_list, data5_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
d = (
Map()
.add("死亡人数", [list(z) for z in zip(data2_list, data6_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
e = (
Map()
.add("治愈人数", [list(z) for z in zip(data2_list, data7_list)], "china")
.set_global_opts(
title_opts=opts.TitleOpts(),
visualmap_opts=opts.VisualMapOpts(max_=200),
)
)
page = Page(layout=Page.DraggablePageLayout)
page.add(
a,
b,
c,
d,
e,
) # 先生成render.html文件 page.render() # 完成上一步之后把 page.render()这行注释掉 # 然后循行这下面 '''
Page.save_resize_html("render.html",
cfg_file="chart_config.json",
dest="my_test.html")
'''
顺利解决问题。
其实就是数据处理的问题,关于这个之前有写过文章,惊!Pyecharts作图,发现无数据展示?,感兴趣的可以看下,看完之后就一目了然了。
如果有遇到问题,随时联系我解决,欢迎加入我的Python学习交流群。
大家好,我是Python进阶者。这篇文章主要盘点了一道Pyecharts作图的问题,文中针对该问题给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28