
作者:俊欣
来源:关于数据分析与可视化
今天小编带领大家用Python自制一个自动生成探索性数据分析报告这样的一个工具,大家只需要在浏览器中输入url便可以轻松的访问,如下所示
首先我们导入所要用到的模块,设置网页的标题、工具栏以及logo的导入,代码如下
from st_aggrid import AgGrid import streamlit as st import pandas as pd import pandas_profiling from streamlit_pandas_profiling import st_profile_report from pandas_profiling import ProfileReport from PIL import Image
st.set_page_config(layout='wide') #Choose wide mode as the default setting #Add a logo (optional) in the sidebar logo = Image.open(r'wechat_logo.jpg')
st.sidebar.image(logo, width=120) #Add the expander to provide some information about the app with st.sidebar.expander("关于这个项目"):
st.write("""
该项目是将streamlit和pandas_profiling相结合,在您上传数据集之后自动生成相关的数据分析报告,当然该项目提供了两种模式 全量分析还是部分少量分析,这里推荐用部分少量分析,因为计算量更少,所需要的时间更短,效率更高
""") #Add an app title. Use css to style the title st.markdown(""" <style> .font {
font-size:30px ; font-family: 'Cooper Black'; color: #FF9633;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font">请上传您的数据集,该应用会自动生成相关的数据分析报告</p>', unsafe_allow_html=True)
output
紧接的是我们需要上传csv文件,代码如下
uploaded_file = st.file_uploader("请上传您的csv文件: ", type=['csv'])
我们可以选择针对数据集当中所有的特征进行一个统计分析,或者只是针对部分的变量来一个数据分析,代码如下
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
option1 = st.sidebar.radio( '您希望您的数据分析报告中包含哪些变量呢',
('所有变量', '部分变量')) if option1 == '所有变量':
df = df elif option1 == '部分变量':
var_list = list(df.columns)
要是用户勾选的是部分变量,只是针对部分变量来进行一个分析的话,就会弹出来一个多选框来供用户选择,代码如下
var_list = list(df.columns) option3 = st.sidebar.multiselect( '筛选出您希望在数据分析报告中包含的变量', var_list) df = df[option3]
用户可以挑选到底是“简单分析”或者是“完整分析”,要是勾选的是“完整分析”的话,会跳出相应的提示,提示“完整分析”由于涉及到更加复杂的计算操作,耗时更加地长,要是遇到大型的数据集,还会有计算失败的情况出现
option2 = st.sidebar.selectbox( '筛选模式,完整分析还是简单分析',
('简单分析', '完整分析')) if option2 == '完整分析':
mode = 'complete' st.sidebar.warning( '完整分析由于涉及到更加复杂的计算操作,耗时更加地长,要是遇到大型的数据集,还会有计算失败的情况出现,这里推荐使用简单分析') elif option2 == '简单分析':
mode = 'minimal' grid_response = AgGrid(
df,
editable=True,
height=300,
width='100%',
)
updated = grid_response['data']
df1 = pd.DataFrame(updated)
当用户点击“生成报告”的时候就会自动生成一份完整的数据分析报告了,代码如下
if st.button('生成报告'): if mode=='complete':
profile=ProfileReport(df,
title="User uploaded table",
progress_bar=True,
dataset={ "简介": '欢迎关注公众号:关于数据分析与可视化', "作者": '俊欣', "时间": '2022.05' })
st_profile_report(profile) elif mode=='minimal':
profile=ProfileReport(df1,
minimal=True,
title="User uploaded table",
progress_bar=True,
dataset={ "简介": '欢迎关注公众号:关于数据分析与可视化', "作者": '俊欣', "时间": '2022.05' })
st_profile_report(profile)
最后出来的结果如下,这里再来显示一遍
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29