京公网安备 11010802034615号
			经营许可证编号:京B2-20210330
		作者:俊欣
来源:关于数据分析与可视化
今天小编带领大家用Python自制一个自动生成探索性数据分析报告这样的一个工具,大家只需要在浏览器中输入url便可以轻松的访问,如下所示
首先我们导入所要用到的模块,设置网页的标题、工具栏以及logo的导入,代码如下
from st_aggrid import AgGrid import streamlit as st import pandas as pd import pandas_profiling from streamlit_pandas_profiling import st_profile_report from pandas_profiling import ProfileReport from PIL import Image
st.set_page_config(layout='wide') #Choose wide mode as the default setting #Add a logo (optional) in the sidebar logo = Image.open(r'wechat_logo.jpg')
st.sidebar.image(logo,  width=120) #Add the expander to provide some information about the app with st.sidebar.expander("关于这个项目"):
     st.write("""
        该项目是将streamlit和pandas_profiling相结合,在您上传数据集之后自动生成相关的数据分析报告,当然该项目提供了两种模式 全量分析还是部分少量分析,这里推荐用部分少量分析,因为计算量更少,所需要的时间更短,效率更高
     """) #Add an app title. Use css to style the title st.markdown(""" <style> .font {                                          
    font-size:30px ; font-family: 'Cooper Black'; color: #FF9633;} 
    </style> """, unsafe_allow_html=True)
st.markdown('<p class="font">请上传您的数据集,该应用会自动生成相关的数据分析报告</p>', unsafe_allow_html=True)
output
紧接的是我们需要上传csv文件,代码如下
uploaded_file = st.file_uploader("请上传您的csv文件: ", type=['csv'])
我们可以选择针对数据集当中所有的特征进行一个统计分析,或者只是针对部分的变量来一个数据分析,代码如下
if uploaded_file is not None:
     df = pd.read_csv(uploaded_file)
     option1 = st.sidebar.radio( '您希望您的数据分析报告中包含哪些变量呢',
          ('所有变量', '部分变量')) if option1 == '所有变量':
          df = df elif option1 == '部分变量':
          var_list = list(df.columns)
要是用户勾选的是部分变量,只是针对部分变量来进行一个分析的话,就会弹出来一个多选框来供用户选择,代码如下
var_list = list(df.columns)
option3 = st.sidebar.multiselect(
     '筛选出您希望在数据分析报告中包含的变量',
     var_list)
df = df[option3]
用户可以挑选到底是“简单分析”或者是“完整分析”,要是勾选的是“完整分析”的话,会跳出相应的提示,提示“完整分析”由于涉及到更加复杂的计算操作,耗时更加地长,要是遇到大型的数据集,还会有计算失败的情况出现
option2 = st.sidebar.selectbox( '筛选模式,完整分析还是简单分析',
      ('简单分析', '完整分析')) if option2 == '完整分析':
      mode = 'complete' st.sidebar.warning( '完整分析由于涉及到更加复杂的计算操作,耗时更加地长,要是遇到大型的数据集,还会有计算失败的情况出现,这里推荐使用简单分析') elif option2 == '简单分析':
      mode = 'minimal' grid_response = AgGrid(
           df,
           editable=True,
           height=300,
           width='100%',
      )
      updated = grid_response['data']
      df1 = pd.DataFrame(updated)
当用户点击“生成报告”的时候就会自动生成一份完整的数据分析报告了,代码如下
if st.button('生成报告'): if mode=='complete':
            profile=ProfileReport(df,
                title="User uploaded table",
                progress_bar=True,
                dataset={ "简介": '欢迎关注公众号:关于数据分析与可视化', "作者": '俊欣', "时间": '2022.05' })
            st_profile_report(profile) elif mode=='minimal':
            profile=ProfileReport(df1,
                minimal=True,
                title="User uploaded table",
                progress_bar=True,
                dataset={ "简介": '欢迎关注公众号:关于数据分析与可视化', "作者": '俊欣', "时间": '2022.05' })
            st_profile_report(profile)
最后出来的结果如下,这里再来显示一遍
                  数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28