京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
最近Python圈子当中出来一个非常火爆的框架PyScript,该框架可以在浏览器中运行Python程序,只需要在HTML程序中添加一些Python代码即可实现。该项目出来之后便引起了轰动,马上蹿升到了Github趋势榜榜首,短短20天已经有10K+的star了。既然如此,小编今天就带大家来看看该框架是如何使用的。
我们先来看一下简单的例子,代码如下
<html> <head> <link rel="stylesheet" href="https://pyscript.net/alpha/pyscript.css" /> <script defer src="https://pyscript.net/alpha/pyscript.js"></script> </head> <body> <py-script> print('Hello, World!') </py-script> </body> </html>
其中Python代码被包裹在了py-script标签里面,然后我们在浏览器中查看出来的结果,如下所示
下面这一个例子当中,我们尝试将matplotlib绘制图表的代码放置到HTML代码当中去,以实现绘制出一张直方图的操作。首先是matplotlib代码部分,
import matplotlib.pyplot as plt import numpy as np
np.random.seed(42) ## 随机生成满足正态分布的随机数据 rv = np.random.standard_normal(1000)
fig, ax = plt.subplots()
ax.hist(rv, bins=30)
output
然后我们将上面的代码放置到HTML代码当中去,代码如下
<html> <head> <link rel="stylesheet" href="https://pyscript.net/alpha/pyscript.css"/> <script defer src="https://pyscript.net/alpha/pyscript.js"></script> <py-env> - numpy
- matplotlib </py-env> </head> <body> <h1>Plotting a histogram of Standard Normal distribution</h1> <div id="plot"></div> <py-script output="plot"> import matplotlib.pyplot as plt
import numpy as np
np.random.seed(42)
rv = np.random.standard_normal(1000)
fig, ax = plt.subplots()
ax.hist(rv, bins=30)
fig </py-script> </body> </html>
output
由于我们后面需要用到numpy和matplotlib两个库,因此我们通过py-env标签来引进它们,另外
我们在上面的基础之上,再来绘制一张折线图,首先我们再创建一个div标签,里面的id是lineplot,代码如下
<div id="lineplot"></div>
同样地在py-script标签中放置绘制折线图的代码,output对应div标签中的id值
<py-script output="lineplot"> ......... </py-script>
绘制折线图的代码如下
import matplotlib.pyplot as plt fig, ax = plt.subplots() year1 = [2016, 2017, 2018, 2019, 2020] population1 = [30, 46, 45, 55, 48] year2 = [2016, 2017, 2018, 2019, 2020] population2 = [43, 48, 44, 75, 45] plt.plot(year1, population1, marker='o', linestyle='--', color='g', label='Countr_1') plt.plot(year2, population2, marker='d', linestyle='-', color='r', label='Country_2') plt.xlabel('Year') plt.ylabel('Population (M)') plt.title('Year vs Population') plt.legend(loc='lower right') fig
output
现阶段运行带有Pyscript的页面加载速度并不会特别地快,该框架刚刚推出,仍然处于测试的阶段,后面肯定会不断地优化。要是遇到加载速度慢地问题,读者朋友看一下是不是可以通过更换浏览器得以解决。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28