京公网安备 11010802034615号
经营许可证编号:京B2-20210330
艾哈迈德·贝斯贝斯,AI工程师//博客作者//跑步者。
这是个人的观察,但我相信你们中的许多人在阅读这篇文章时会有同样的感受。
我是一名数据科学家,我喜欢我的工作,因为我认为它涵盖了各种相互依赖的领域,使它丰富和刺激。然而,我有时不得不与那些不完全理解组织或领域中这个角色的人打交道。坦率地说,这让我和我认识的许多人都有点沮丧。
在你继续阅读之前,我应该提到,我的目的不是阻止任何人对这个角色的渴望。我只是在陈述行业中普遍出现的一些负面方面,以及避免这些负面方面的可能解决方案。
原则上,这没问题。我也不明白其他人是怎么做的。然而,我不明白的是,一些当事人对了解你在帮助他们时做了什么完全缺乏兴趣和好奇心。我不是说他们应该了解神经网络的每一个小算法细节,但至少,他们应该了解你的方法,你解决问题的方法。有时,就好像你被委托做一项没有人关心的痛苦而肮脏的任务。
有些项目经理对你正在做的事情不感兴趣,除非你做完了。我想这些家伙把管理提升到了一个全新的水平。
哦!你是数据科学家?你一定对数字很在行。你为什么不看看我的文件,把数据处理一下呢?我听说你的“蟒蛇”能很快释放出魔力。在这里,去玩我的文件,完成后来看我。
-怎么办?
为了使每个人都在同一页上,一个解决方案是向没有技术背景的团队提供培训和意识。这需要通过内部研讨会、认证或MOOC订阅广泛的技术主题,如机器学习、深度学习或NLP的介绍性讲座。当建立这些领域的知识时,队友会变得积极主动,更多地参与到建立过程中。项目经理也意识到了挑战。
嗯,十年前,当这个领域开始出现时,这个方法非常有效,Hadoop和Spark这个词到处都是。你可以把你知道的所有流行语都堆在一起,希望得到一个大支票(它奏效了!)。
这已经不是2010年了。公司现在密切关注你愿意出售的东西。他们了解市场、竞争对手和挑战。他们几乎彻底扫描了所有东西。他们也知道什么是可行的,什么是不可行的。如果你没有脱颖而出,对你的价值主张和你的数据科学团队能带来的技术专长不够清楚,你最有可能失去这笔交易。
当然,尽管如此,总有一些穿西装的胆子很大的家伙发表这种鼓舞人心的声明:
让我们在这里和那里投入一点数据科学来加强我们的宣传,并让客户支付一大笔钱!
那不是很美吗?
— What to do?
不要表现得好像数据科学家会彻底改变和破坏您的组织。市场开始知道限制是什么。与市场接轨。
我们都知道这种感觉,而且很烂。你在努力工作中失败了,而另一个人展示了你的结果,并拿走了所有的功劳。这在任何地方都很常见,当您在数据科学团队中与业务伙伴协作时,这种情况会发生得更多。
如果你对团队很有价值,你的同事自然应该让你在利益相关者面前发光发热。然后你的声音被听到并参与决策过程。
然而,如果你觉得你被当作一种可互换的资源,或者被放在一边,在阴影下工作,为那些说话的人制作数字,也许是时候重新考虑你的立场了。
— What to do?
构建数据产品时,每个人都很重要。这不应该仅仅是我们告诉自己的一个说法。它必须体现在我们的会议、演示和日常关系中。
嗯,虽然听起来很诱人,但这并不像我们想象的那么容易。仅仅因为我们配备了这些工具并不一定意味着你可以期待立即的可操作的结果。这需要建立关于业务的知识,建立正确的直觉和假设。这需要时间,而且是一个学习的过程。
让我们处理数据并让它说话。
— What to do?
接受这样一个事实,即数据科学家必须花费大量时间了解业务并建立自己的直觉。这需要采访组织中的不同参与者,对数据进行各种分析,进行试验,失败,并获得持续的建设性反馈。
如果您还想为您的数据科学团队提供最好的条件,请确保至少有干净的数据管道,并有清晰的描述。
对于数据科学家的角色仍然存在着强烈的误解。不仅非技术高管,技术领域的其他同事也认为,数据科学家对Spark、Hadoop、SQL、TensorFlow、NLP、AWS、生产级应用程序、docker等都了如指掌。掌握这些工具是很棒的,但是这个过程需要几年的时间和大量的经验。
如果你是一名数据科学家,你申请的公司在一份申请中提到了所有这些技术词汇,请仔细检查该公司。它有可能对自己的数据战略没有明确的愿景,也没有对招聘的角色有明确的定义。
我们需要修复我们的数据问题。让我们雇佣一名数据科学家。
— What to do?
数据科学家并不总是您数据问题的最终解决方案-雇用前要仔细检查。也许你需要的是一个数据分析师或者一个后端开发人员。数据科学家不是精通一切的忍者。
如果你希望你的团队成功地构建你想要构建的任何东西,确保你周围有互补的技能。
在交付一级:
在管理层面:
这是基于来自朋友和同事的讨论和几个反馈的汇编。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01