
弗雷德里克·巴斯勒,APTEO增长营销。
获得一份数据科学工作就像学习Python和Jupyter之类的技能一样容易,参加Kaggle比赛,获得认证,并在求职门户网站上提交简历,对吗?
错误。
最近,Kaggle的用户达到了500万。看看其他社区,走向数据科学每月有2000万的浏览量。人工智能研究员吴恩达在他的Coursera课程中有400万学习者。
与此同时,全世界只有17100毫升的工程师。在撰写本文时,全球LinkedIn上有2100个开放的机器学习工程师角色。其中,大约80人在Faangs。
公平地说,如果我们把普通数据科学和人工智能研究员的角色包括在内,全球总共有86000个空缺职位。尽管如此,称数据科学为“竞争”将是今年的轻描淡写。
在商业上,竞争激烈的领域被称为“红海”,鲨鱼在拥挤的空间里争分夺秒。相比之下,“蓝海”指的是未开发的、没有竞争对手的市场空间。
作为一个未来的数据科学家,你的目标是在蓝海中竞争。这里有四种方法可以做到这一点。
我是LinkedIn超级粉丝。事实上,我参加了100多个LinkedIn学习课程后,已经成为LinkedIn的特色,我发了超过10,000条评论的帖子,我有超过20,000个连接。也就是说,仅仅依靠LinkedIn是一种红海战略(⚠·️)。
LinkedIn拥有亿万用户中的三分之二。这意味着,如果你只在LinkedIn上建立网络,并通过LinkedIn申请工作,你将与大量难以置信的人竞争。
作为一个使用LinkedIn招聘人员的人,好的招聘信息可能会被如此多的申请者淹没,如此之快,以至于连浏览所有的申请都很难,更不用说给每个人反馈了。
这就是为什么除了和LinkedIn之外,我还建议您使用利基平台,如Shapr、Y Combinator在初创公司的工作、LunchClub.ai(注意:这是我的邀请链接,但我没有报酬)、Wizards等松散社区,以及Meetup或Eventbrite上的离线社区。
所有这些都是免费的。
紧密结合的社区让脱颖而出变得容易得多。例如,Shapr和RunchClub都是专业网络,完全专注于建立一对一的联系。
我曾经遇到一个参加会议的人,他开玩笑说“网络是说不工作的新方式。”有趣的是,我还在那次会议上遇到了一个新客户。
网络与第一点类似,但这里我明确地指的是什么时候该申请工作了。
您可能听说过这样的故事:人们提交了数百份工作申请,却没有得到任何回复。也许你自己也是这种现象的受害者。
虽然有些人通过这种方式找到工作,但越来越有可能的是,在某个求职网站上提交简历意味着你永远不会得到回复。正如我所提到的,招聘经理已经被应聘者淹没了。
就像把你的简历扔进黑洞一样。
问问你自己:如果你必须决定雇佣谁,在一个完全陌生的人和一个介绍给你的人之间,你会选择谁?
因此,招聘经理和高管几乎总是和他们有一些联系的求职者一起去,即使只是由一个共同的熟人介绍。
你的关系网越多,你与潜在雇主的相互联系就越多,就越容易得到介绍。
下面是一个超级简单的模板,您可以使用该模板向相互连接询问介绍:
首先,参与他们的最新帖子,然后信息。
嘿Connector_name,
我希望你过得很好。因为我们在同一个行业,并且和[@name]在[@company]有共同的联系,我希望你能通过LinkedIn介绍我。我最近申请了他们的[招聘职位]。
我写了一条草稿消息,您可以复制/粘贴到他们那里进行简单介绍:
你好[@name],
我注意到您正在招聘一个[招聘职位]。
我想把[@Frederik Bussler]介绍给你,他是一个潜在的候选人,在这个空间里有[earchement_1]和[earchement_2]。弗雷德里克有兴趣和你谈谈这个职位。您想简单介绍一下吗?
谢谢,
connector_name
数据科学是一个多学科领域,一个很大的组成部分是领域专门知识。
例如,Walmartuses预测模型可以预测特定时间的需求。如果一个数据科学家职位的招聘经理必须在“Python专家”和“零售预测建模专家”之间做出选择,显然更专业的候选人会赢,其他条件都一样。
亚马逊的推荐工程师贡献了亚马逊高达35%的收入,他们不断雇佣数据科学人才来培养这只金鹅。如果你在推荐引擎上工作过--即使只是作为一个附带项目--这会让你比一个更通才的申请人更有优势。
学习SpecializedSkills--哪个专业取决于你的个人兴趣--是一个游戏规则的改变者。
证书在2020年风靡一时。如果你使用领英,你肯定会注意到臭名昭著的“认证贴”。
用户展示他们从Coursera、EdX、在线学习门户、LinkedIn Learning和数百万其他来源获得的证书。我也对此感到内疚--正如我提到的,我参加了100多门LinkedIn学习课程,并获得了几乎所有常春藤盟校的证书。
也就是说,依靠证书是一种红海战略(⚠·️)。当数百万人拥有与你相同的证书时,那么你就需要区分器。
实际的项目,在那里你分析你感兴趣的数据,会给你一个巨大的优势。
为了获得灵感,您可以查看上面提到的数据科学职业趋势SDashboard和其他公共工作区。
数据科学是一个竞争日益激烈的领域,但你可以通过使用利基平台、发展你的专业网络、专注于你感兴趣的领域,并与世界分享独特的项目来脱颖而出。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15