作者:俊欣
来源:关于数据分析与可视化
小编最近碰上了一个数据分析利器,可以将我们需要的数据展示在网页上,并且进行相对深度的数据分析与挖掘,所以就打算借此机会和大家分享一下。
我们知道用Streamlit模块来进行web应用的开发真的非常的方便,但是在展示表格方面则显得十分地简陋,只有两个简单的接口函数,分别是st.table(df)和st.dataframe(df),对于字段较多的表格数据的展示非常的不友好,今天小编就来介绍一款Streamlit的插件,streamlit-aggrid,它的基础功能包括
首先我们先通过pip命令下载该模块
pip install streamlit-aggrid
我们先来写一个简单的demo,看一下该模块到底能实现哪些功能,代码如下
import pandas as pd import streamlit as st from st_aggrid import AgGrid
st.set_page_config(page_title="网飞(Netflix)的电影数据分析", layout="wide")
st.title("网飞(Netflix)的电影数据分析")
shows = pd.read_csv("netflix_titles.csv")
AgGrid(shows)
output
我们和st.dataframe(shows)出来的结果相比,发现调用streamlit-aggrid模块展示出来的表格更加美观,如下图所示
不同方法的结果对比
当然我们还能够给数据进行排序,如下图所示
并且还可以根据指定的条件来进行数据的筛选,如下图所示
我们还可以按照自己的喜好来拖拽表格当中的每一列的数据,调整表格的顺序
除了上面的一些基本操作之外,streamlit-aggrid模块展示出来的表格数据还支持翻页操作,代码如下
import pandas as pd import streamlit as st from st_aggrid import AgGrid from st_aggrid.grid_options_builder import GridOptionsBuilder
st.set_page_config(page_title="网飞(Netflix)的电影数据分析", layout="wide")
st.title("网飞(Netflix)的电影数据分析")
shows = pd.read_csv("netflix_titles.csv")
gb = GridOptionsBuilder.from_dataframe(shows)
gb.configure_pagination()
gridOptions = gb.build()
AgGrid(shows, gridOptions=gridOptions)
output
我们平常在Pandas模块当中用到的groupby分组统计来streamlit-aggrid模块当中也可以轻松地实现,代码如下
import pandas as pd import streamlit as st from st_aggrid import AgGrid from st_aggrid.grid_options_builder import GridOptionsBuilder
st.set_page_config(page_title="网飞(Netflix)的电影数据分析", layout="wide")
st.title("网飞(Netflix)的电影数据分析")
shows = pd.read_csv("netflix_titles.csv")
gb = GridOptionsBuilder.from_dataframe(shows)
gb.configure_pagination()
gb.configure_side_bar()
gb.configure_default_column(groupable=True, value=True, enableRowGroup=True, aggFunc="sum", editable=True)
gridOptions = gb.build()
AgGrid(shows, gridOptions=gridOptions, enable_enterprise_modules=True)
这样,在表格的最左侧会出现工具栏,我们可以在其中进行进一步的操作,如下图所示
在Pandas模块当中我们可以给指定的数据高亮显示,那么同样地在streamlit-aggrid模块当中也可以实现,代码如下
shows = pd.read_csv("netflix_titles.csv")
gb = GridOptionsBuilder.from_dataframe(shows)
cellsytle_jscode = JsCode( """
function(params) {
if (params.value.includes('United States')) {
return {
'color': 'white',
'backgroundColor': 'red'
}
} else {
return {
'color': 'black',
'backgroundColor': 'white'
}
}
};
""" )
gb.configure_column("country", cellStyle=cellsytle_jscode)
gridOptions = gb.build()
data = AgGrid(
shows,
gridOptions=gridOptions,
enable_enterprise_modules=True,
allow_unsafe_jscode=True )
我们将国家为“美国”的电影数据用红色高亮显示出来,如下图所示
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27