京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Bigabid首席技术官兼联合创始人Amit Attias
无论一个数据科学家刚刚开始她的职业生涯,还是她已经是一个经验丰富的专业人士,在初创企业工作都有很多优势。大多数创业公司都更加亲力亲为,通常大多数员工都参与了公司的许多方面。这为参与和扩大技能提供了一个很好的机会。
在一个较大的公司,一个团队可能负责研究和开发,而另一个团队负责质量保证。在初创企业,同一个团队可能负责研究、开发和测试的所有方面。因此,创业专业人士接触到了更广泛的经验,因为他们看到了全局,并迅速获得了成为团队领导者所需的工具。
如果一名数据科学家有机会在初创公司工作,这里有六个小贴士将帮助她和其他数据专业人士取得成功:
作为一名团队成员,数据科学家不仅应该在需要代码审查时审查笔记本,还应该阅读团队的所有笔记本和附带笔记本(包括可能有不同关注点的笔记本)。这确保了她对整个过程以及研究是如何发展的获得最充分的理解。数据科学家每天做出无数的决定,他们甚至没有意识到。研究笔记本让她收获了其他人在初创公司完成的代码审查的好处。
好处有两方面:
通过积极地与团队联系,一个数据科学家不仅可以了解其他人在做什么,她还可以发现如何以有意义和有价值的方式做出贡献。
拥抱初创企业的“自己动手”精神,让数据科学家有机会开发软件工具,而在较大的公司中,这些工具将由独立的工程团队开发。这不仅提高了一个人的技能,也使一个人更加自给自足,使一个人能够独立地排除和修复问题。
在一个较小的初创企业,团队中的每个成员都是一个更大的生态系统中有价值的一部分,协调一致地创建一个产品或服务。这转化为参与和理解公司使命的每一个方面背后的推理的机会。
理解用户界面就像理解流程和系统的利益相关者一样重要。当处理一个假设、建立一个内部工具、训练一个模型时,数据科学家必须考虑:
一个数据科学家可以通过寻找用户反馈来更好地理解UI的工作原理,如果在她工作的初创公司有的话。有时,用户可能已经知道什么有效,什么不有效,所以通过倾听他们的意见,可以帮助她决定重点开发哪些功能。从队友那里得到关于可能盲点的反馈也很重要,因为他们的视角会不同,他们的有利位置会发现疏忽。
通过对数据科学家创造的内容承担全部责任,她可以获得用户和团队中其他人提供的有价值的见解,并加以很好地利用。
在一家较大的公司,在测试一个拉请求后,数据科学家的工作就结束了。在初创公司,同一个数据科学家会更进一步,检查功能/模型是如何运行的,以及她的见解是如何实现的。初创企业的数据科学家还必须关注实时监视器和日志,检查其中一些,以发现最初几分钟/几小时/几天内的任何违规行为。
正如这六个小贴士所展示的那样,创业公司的成功需要更高的适应能力,随机应变的意愿,以及在需要时调整方向的能力。它还需要成为一个紧密团结的团队的一部分的愿望,并看到产品或服务的每一个发展阶段。尽管风险可能很高,但回报可能很大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01