
作者Jo Stichbury,自由技术作家
数据科学是一个新兴的成熟领域,从数据工程和数据分析到机器和深度学习,各种工作职能不断涌现。数据科学家必须结合科学、创造性和调查性的思维,从一系列数据集中提取意义,并解决客户面临的潜在挑战。
从零售、交通和金融到医疗保健和医学研究,生活的各个领域都产生了越来越多的数据。
可用计算能力的增加和人工智能的最新进展将数据科学家--获取原始数据、分析数据并使其有用和可用的人--推到了聚光灯下。
根据收入潜力、报告的工作满意度和Glassdoor上的职位空缺数量等标准,自2016年以来,数据科学一直位居北美50个最佳职位榜首。
那么成为一名数据科学家需要什么呢?
为了获得成功的一些技巧,我采访了Ben Chu,他是atRefinitiv Labs的资深数据科学家。
朱棣文拥有人工智能的背景,尤其是语言学、语义学和图形领域,并在新加坡路孚特实验室工作了两年。
朱棣文在我们的采访开始时说,数据科学家应该像调查人员一样思考。
你需要通过问“为什么?”来感到好奇和兴奋。“这有点像当侦探,把一个个点串起来,发现新线索。”
在金融领域,数据科学家从一系列数据集中提取意义,以通知客户并指导他们的关键决策。
数据科学家必须放大客户想要解决的挑战,并从他们正在处理的数据中获取线索。
从与朱棣文的交谈中,我了解到能够转移焦点并考虑调查的背景是多么重要。
如果不能解决根本问题,完美的分析是没有帮助的。有时你需要回头,尝试一种新的方法,重新定义你试图回答的问题。其核心是好奇心。你需要喜欢问题!
数据科学家使用一系列工具来管理他们的工作流、数据、注释和代码。
“我必须非常勤奋。我需要衡量和跟踪我的进展,这样我就可以备份和尝试一个新的方向,重用以前的工作,并比较结果。
“重要的是要科学,在你前进的过程中进行观察、实验和记录,这样你就可以复制你的发现。我需要组织我的观察,所以我用概念作为我的主要工具,把我所有的笔记、论文和可视化放在一个地方。“
朱棣文强调,需要保存记录,不仅要追溯到他目前的调查,还要追溯到所有以前的发现。
“这就像数据科学日记。当我遇到类似的情况时,我会保留很好的参考点,并参考它们来指导我的下一步行动。“
数据科学不仅仅是有一个科学的方法。职称可能会误导人;你不必来自科学背景,但你确实需要能够创造性地思考。通常,另类思维是你应对挑战的关键。
“我必须在解决问题的科学思维和引导我走上新的和不同的探索道路的创造性思维之间切换。
“逻辑的、科学的思维对帮助我得出结论至关重要,但戴上一顶创造性的帽子同样重要:我用好的和失败的例子作为观察新模式的线索。这都是关于‘编码智能’的。“
您需要扎实的编码技能,以便能够使用各种数据处理技术对不同的数据源进行预处理,以解决噪声或不完整的数据。
您还需要能够创建机器学习管道,这将要求您知道如何构建模型,并使用工具和框架来评估和分析其性能。
Chu和大多数数据科学家一样使用Python,因为有很多优秀的包可以操作和建模数据。
事实上,Glassdoor在2017年上半年对其网站上的10,000份数据科学家工作列表进行了抽样,发现三种特殊的技能--Python、R和SQL--构成了数据科学领域大多数职位空缺的基础。
Ben Chu的团队依赖于开源机器学习包,如Tensorflow,Pytorch和Bert。
“我们主要将合流用作文档工具;用于机器学习的MLFlow,Amazon Sagemaker,Scikit-Learn、Tensorflow,PyTorch和BERT;Apache Spark在大型数据集中构建快速数据管道;和雅典娜作为我们的数据库来存储我们处理过的数据。
“我们还使用Superset来连接数据,并更容易地构建仪表板来输出图表,这使其更加直观。”
朱棣文现在是路孚特实验室的一名高级数据科学家,但他从小就想成为一名音乐家,并对语言着迷。对于我在自然语言处理领域的工作,我需要很好地理解语言学,特别是语义学和语言的细微差别。
他解释说,一个数据科学团队需要一系列的技能--他和他的同事有来自不同背景的重叠技能。
“你需要的技能将取决于你工作的领域。例如,我需要对金融有很好的了解。
“例如,数据分析正被应用于减少欺诈,通过建立异常检测方法来检测欺诈‘行为',作为交易数据中的不规则模式。
“像我这样的数据科学家需要精通如何处理各种孤立的金融数据。知道要结合什么是至关重要的,因为没有这种理解,我就无法建立一个成功的模型。“
进入数据科学并不一定要成为一名计算机科学家或数学家。没有人在每个领域都拥有所有的专业知识。你可以有法律、经济或科学背景。都是关于你思考的方式。
如果您能够灵活和系统化,您将能够在使用工具、框架和数据集时熟悉这些工具、框架和数据集的细节。
对于那些渴望发展数据科学技能的人,朱棣文提供了一些实用的建议,尽管新冠肺炎造成了干扰,但你可以很容易地采用这些建议。
你可以在网上寻找研究社区、参加网络研讨会和找到培训课程。一旦面对面的网络再次可行,朱建议您积极参与数据科学社区。
“去参加会议和黑客马拉松,这将帮助你建立一个强大的网络来讨论你的想法,启发你的研究,回答你的问题”。
此外,请记住,数据科学领域是一个新的领域,而且仍在不断成熟。
出现了各种不同的职位头衔,如数据科学家、数据工程师和数据分析师,以及机器学习和深度学习工程师。您可能会发现一个角色比另一个角色更适合您的兴趣和技能。
挖掘你的好奇心和创造力,提高你的Python技能,进入数据科学!
本文最初出现在2020年4月初的《路孚特透视》上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16