
由解决方案架构师和数据工程师Mohammed M Jubapu撰写
数据工程是当今市场上最受欢迎的工作之一。数据无处不在,被认为是新时代的石油。企业从不同的来源产生大量的数据,数据工程师的任务就是组织数据信息的收集、处理和存储。然而,要成为一名数据工程师,你需要具备一些优秀的技能,如数据库、大数据、ETL和数据仓库、云计算以及编程语言。但问题来了,你是想拥有所有这些技能,还是体验过使用所有工具?这是最大的困境,特别是在有各种工具可以完成任务的技术中。
好吧,为了简化这一点,让我们喝一杯,直接进入数据工程就业市场的最新技能集观察,这肯定会给你现有的职业生涯增添动力,或者帮助你开始你的数据工程之旅。
是的,编程语言是数据工程的必备技能。大多数职位说明要求至少精通一种编程语言。这些语言是编写ETL或数据管道框架所必需的。通用编程语言是掌握数据工程和管道所需的核心编程技能。其中,JavaandScalaare用于在Hadoop上编写MapReduce作业;Pythonis是数据分析和管道的流行选择,而Rubyy也是一个流行的应用程序粘合剂。
蟒蛇!蟒蛇!蟒蛇!是的,大约70%的工作概要要求具备Python技能,其次是SQL、Java、Scala和其他编程技能,如R、.NET、Perl、Shell脚本等。
数据处理是将数据收集和操作成可用的和所需的形式。Apache Spark在数据处理层中名列前茅,其次是AWS Lambda、Elasticsearch、MapReduce、Oozie、Pig、AWS EMR等。Apache Spark是一个强大的开放源码框架,以非常快的速度提供交互式处理、实时流处理、批处理和内存处理、标准接口和易用性。
对于任何需要分析或处理的数据,首先需要将其收集或摄取到数据管道中。Rest API是用于此目的的常用工具,其次是Sqoop、Nifi、Azure Data Factory、Flume、Hue等。
数据缓冲是数据工程框架中的一个关键部分,当数据从一个地方移动到另一个地方时,需要临时存储数据以满足大量数据的需求。Apache Kafka是一个常用的分布式数据存储,为实时获取和处理流数据进行了优化。流数据是由数以千计的数据源连续生成的数据,这些数据源通常同时发送数据记录。流媒体平台需要处理这种不断涌入的数据,并按顺序和增量地处理这些数据。这一类的其他工具有Kinesis、Redis Cache、GCP pub/sub等。
数据需要存储以进行处理、分析或可视化,以产生有价值的见解。数据存储可以采用数据仓库、Hadoop、数据库(包括RDBMS和NoSQL)、数据集市等形式。SQL技能最多,其次是Hive、AWS Redshift、MongoDB、AWS S3、Cassandra、GCP BigQuery等。
数据可视化是以图形、图表或其他可视化格式表示数据或信息。它通信数据与图像的关系。Tableau和PowerBI领先于SAP Business Objects、Qlik、SPSS、QuickSight、MicroStrategy等。
有不同的云平台或基于内部的平台,可以利用它们来处理不同的数据工程工具集。列出的典型有Hadoop、谷歌云平台、AWS、Azure和Apprenda。
嗯,一个人不可能是一个大师或经验丰富的所有技能和工具,它绝对不是强制性的拥有所有这些技能。但通常要求在每个数据管道框架类别中至少拥有一个,如用于云平台的GCP、用于开发的Python、用于处理的Apache Spark、用于数据收集的Rest API、用于数据缓冲的Apache Kafka、用于数据存储的Hive和用于数据可视化的PowerBI。
学习,获得技能,提升你的事业!祝你好运&快乐的数据工程!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28