京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当你开始从事数据科学方面的工作时,一些需要获得的技能将是显而易见的。你知道你需要在编码、分析和数学方面的经验,但你也应该培养一些软技能。虽然当你想到数据科学时,这些可能不会立即浮现在脑海中,但它们将在你的职业生涯中发挥关键作用。
数据科学的工作需求仍然很高,但新的职位空缺正在减少,尽管比其他职业要慢。该领域的盈利能力也将吸引更多的申请者,因此竞争正在加剧。如果你想在其他应聘者中脱颖而出,这里有一些你应该培养的辅助技能。
很多工作都会寻找批判性思维能力强的应聘者,尤其是在数据科学方面。你应该能够从多个角度看待一个问题,了解如何处理它并分析你的结果。这个过程是许多数据科学应用程序的基础,即使它不是该行业独有的。
作为一名数据科学家,你需要知道如何正确地框定一个问题,而不仅仅是回答它。你必须从多个角度分析一个问题,才能找到问题的根源。在解决了一些事情之后,你应该反思这个过程,并理解为什么它会以这样的方式进行。
为了培养批判性思维技能,在业余时间从事各种解决问题的项目。尝试从多个角度来处理它们,并演示解决它们的多种方法。培养这些项目的投资组合可以向潜在的雇主展示你批判性思维的诀窍。
你可能不会认为数据科学是一个通信量很大的领域,但事实远非如此。虽然分析可能是你工作的核心,但你必须传达你的结果。数据科学涉及大量的协作和报告,因此您应该知道如何有效地这样做。
研究表明,不充分的沟通平均每年给大公司造成6240万美元的损失。如果你不能向同事和管理层解释你的问题或想法,他们就不会看到你技术能力的全部。沟通不畅会导致未优化的流程、缺点和损失。
谢天谢地,发展和展示沟通技巧相对简单。在你的整个工作和个人生活中,寻求团队项目。你在一个小组里工作得越多,你就会变得越善于沟通,你会有证据证明这一点。
一个好的数据科学家会寻找问题的解决方案,但一个伟大的科学家会寻求解决问题的方法。数据科学是一个潜在的颠覆性领域,所以您应该能够在传统框架之外进行思考。智力好奇心驱使数据科学家去发现隐藏的问题并创造性地解决它们。
雇主们想要一个有动力去学习更多的数据科学家。这种心态有助于找到解决方案,并能导致公司扩张。好奇心推动增长,所以任何企业都会很乐意找到一个智力好奇心强的候选人。
要培养智力好奇心,就开始问问题。追求独立的项目,并在过程的每一步询问为什么和如何。随着时间的推移,您将开发出一个充满独特问题解决方法和好奇心历史的投资组合。
虽然人们很容易认为科学是僵硬的,但作为一名数据科学家,你必须适应能力强。几乎在任何有技能的行业中,适应性都是可取的,因为员工经常在工作中获得新的技能,以满足不同的需求。你越能适应新的挑战,你就越能成为一个有用的员工。
数据科学影响着当今商业的许多方面,因此您必须将自己应用于各种情况。作为一个以技术为中心的领域,数据科学也一直在发展。新的技术和方法经常出现,你必须能够适应它们。
你可以通过有意地把自己置于不熟悉的环境中来发展适应能力。在你不太适应或不太了解的领域开始一些项目。自愿成为你目前工作或学校中新项目或过程的一部分。你将学习如何在这个过程中进化。
作为一名数据科学家,你应该有可靠的时间管理技能。它可能是一个要求很高的领域,在今天快节奏的工作环境中很容易感到不知所措。如果你能有效地管理你的时间,你就会更有效率,避免倦怠。
一项研究发现,65%的美国工人报告说工作压力造成了困难,10%的人说问题很严重。时间管理技巧可以帮你减轻这种压力。结果,你会感觉更好,你的工作也会改进。
你可以开始在目前的职位上或在课业中应用时间管理技术。测试不同的策略,比如设置计时器和对基本任务进行优先级排序,并找到最适合你的方法或组合。然后你可以向潜在的雇主解释你如何利用这些来有效地管理你的时间。
当您努力获得数据科学所需的经验和技术技能时,请记住这些支持技能。如果你能培养这些能力,你会成为一个更有价值的候选人。即使你已经在相关领域工作,你也可以开始应用这些来最大限度地发挥你的潜力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27