京公网安备 11010802034615号
经营许可证编号:京B2-20210330
多里安·马丁,GetGoodgrade
你想涉足数据工程吗?
好主意.
很多公司都在寻找数据工程师--如果你在LinkedIn上搜索“数据工程师”,仅在美国就会得到88,000多个好的职位。每个人都可以使用远程工作选项,您可以在任何公司找到工作。但是,首先,你需要有必要的技能来成为一个好的应聘者,并被邀请参加面试。
在这篇文章中:
数据工程师四处移动大量数据,因此他们每天都要使用数据库。用于数据库的数据库技术有两种主要类型:SQL和NoSQL(下一节将详细介绍NoSQL)。
强大的SQL技能允许使用数据库构建数据仓库,将它们与其他工具集成,并为业务目的分析数据。有几种SQL类型可能是数据工程师在某个时候专门关注的(高级建模、大数据等),但要达到这些类型需要学习这种技术的基础知识。
这就是为什么所有的公司,从苹果这样的巨头到小企业,都需要他们的数据工程师是使用SQL的专家。
这是一种变得越来越流行的分布式数据存储的不同类型。简单地解释,“NoSQL”这个名称意味着基于不同于SQL的技术。
NoSQL的例子包括Apache River、BaseX、Ignite、Hazelcast、Coherence等。在你的数据工程师求职过程中,你肯定会遇到它们,所以知道如何使用它们将是一个巨大的优势。
Python是需求仍然很高的核心编程语言(事实上,它是程序员第三喜欢的语言)。数据工程师应该精通Python以便能够编写可维护、可重用和复杂的函数。这种语言高效、通用,非常适合文本分析,并为大数据支持提供了合法的基础。
学习Python很容易,这要归功于各种技能级别的可用资源。对于初学者,请随意查看以下内容:
AWS是一个流行的云平台,大多数程序员使用它来变得更加敏捷、创新和可伸缩性。数据工程团队在AWS上回复设计自动化数据流,因此您需要了解使用该工具设计和部署基于云的数据基础设施。
如果你对学习AWS感兴趣,你可能想试试在线课程或亚马逊自己的教程(就像这篇关于AWS和大数据的教程)。然后,你可以尝试一下你的知识,从亚马逊获得官方证书--这是脱颖而出成为专业人士的好方法。
Kafka是一个用于处理实时数据提要的开源处理软件平台。这意味着你可以用它来构建实时流媒体应用程序,这是企业所需要的。卡夫卡驱动的应用程序可以帮助发现和应用趋势,并几乎实时地对客户需求做出反应。
这就是为什么60%的财富100强公司在他们的应用程序中使用卡夫卡。其中包括LinkedIn、Microsoft、Netflix、爱彼迎和Target。例如,《纽约时报》使用卡夫卡来存储和分发已发布的内容到应用程序中,以使读者能够获得这些内容。
Apache Hadoop是数据工程师用来存储和分析大量信息的开源框架。Hadoop不是一个单一的平台,而是许多支持数据集成的工具。这就是为什么它对大数据分析很有用。
如果您成为一名数据工程师,那么您将有机会使用Kafka和Hadoop进行实时数据处理、监控和报告。
写作是这份清单上的第一项软技能。这是许多有抱负的数据工程师往往忽视的东西,结果剥夺了他们自己更好的职业机会。以下是写作对数据工程师最重要的好处:
从使用免费工具如Grammarly检查你的写作开始。它会发现复杂的句子,不必要的单词,并产生建议,使写作更加连贯和清晰。
数据工程师是一个经常与不同利益相关者交流的人,包括数据分析师、首席技术提供商、开发人员、设计师、客户、机器学习工程师和其他人。
LinkedIn的研究发现,沟通--包括人际沟通--是雇主最想要的软技能。无论你是一个内向的人还是没有足够的人际沟通技巧,你都必须学习它们。
考虑从这些领域入手:
一个拥有优秀时间管理技能的数据工程师可以改进他们工作的每一个方面。在这个职业中,有很多事情会让你晚上睡不着,所以有能力规划工作日并坚持时间表是一个惊人的优势。
让数据工程师更快乐的时间管理的好处:
好的是你可以学会时间管理。有一些有用的应用程序,如Forest和HabitMinder(它们非常有助于学习规划和遵守时间表),以及许多你可以使用的书籍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31