
作者尤金·颜,亚马逊应用科学家
“与其手动检查我们的数据,为什么不试试领英的做法呢?它帮助他们实现了95%的准确率和80%的召回率。“
然后我的队友分享了如何使用k-最近邻来识别不一致的标签(在职位名称中)。然后,LinkedIn在一致的标签上训练支持向量机(SVM);然后用支持向量机对不一致的标签进行更新。这帮助他们在职称分类器上达到95%的精确度。
这个建议在我们的讨论中是最有用的。对它的跟踪导致我们的产品分类器的最终准确率达到95%。我问她,她是如何贡献出这种批判性的见解的。“哦,我只是偶尔看看报纸。”她回答。具体来说,她每周都会读1-2篇论文,通常是围绕团队正在研究的主题。
通过阅读论文,我们能够了解其他人(例如LinkedIn)发现哪些有用(或者不有用)。然后我们可以适应他们的方法,而不必重新发明火箭。这有助于我们以更少的时间和精力交付工作解决方案。
如果说我比别人看得更远,那是因为我站在巨人的肩膀上。
-艾萨克·牛顿
阅读论文还拓宽了我们的视野。尽管我们可能在数据科学的狭隘领域工作,但切向研究的发展往往是有帮助的。例如,Word嵌入和graphshave的思想在推荐系统中很有用。同样,来自计算机视觉的思想--如迁移学习和数据增强--对自然语言处理(NLP)有帮助。
阅读论文还使我们了解最新情况。在过去的十年里,自然语言处理领域取得了长足的进步。尽管如此,通过阅读最关键的10篇左右的论文,我们可以很快跟上速度。通过了解最新情况,我们在工作中变得更有效,从而需要更少的时间和精力。然后我们有更多的时间阅读和学习,导致一个良性循环。
如果我们开始养成这个习惯,我们可以阅读任何我们感兴趣的东西--大多数论文都会有一些东西教我们。阅读我们感兴趣的话题也会更容易养成习惯。
我们也可以根据实用性来选择论文。例如,我们可能需要快速理解一个项目的域。在开始一个项目之前,我几乎总是留出时间进行文献综述。花几天时间研究论文可以节省几周甚至几个月的死胡同和不必要的重新发明轮子。
建议也是确定要阅读的有用论文的方便方法。一个黑客是在社交媒体上关注我们崇拜的人,或者订阅精心策划的时事通讯--我发现这些来源的信息噪声比很高。
我读什么报纸?出于实用性,我读的多是与工作有关的论文。这使我能够立即应用我所读到的知识,从而加强我的学习。在工作之外,我对序列感兴趣,并倾向于阅读强化学习。我特别喜欢分享什么有效什么无效的论文,比如通过消融研究。这包括关于Word2VEC、BERT和T5的论文。
在谷歌搜索“如何阅读论文”会返回无数有用的结果。但如果你觉得它势不可挡,这里有几个我发现很有帮助的:
我的方法类似于三遍法。在下面的例子中,我将分享我是如何阅读几篇recsys的论文来了解新颖性、多样性和偶然性的度量标准的。等等。
在第一遍中,我扫描摘要以了解论文是否有我需要的内容,如果有,我浏览标题以确定问题陈述、方法和结果。在这个例子中,我专门寻找如何计算各种度量的公式。我给我的单子上的所有文件一个第一关(并拒绝开始第二关,直到我完成了单子)。在本例中,大约一半的论文进行了第二次传递。
在第二遍中,我再次阅读每一篇论文,并突出显示相关章节。这有助于我在以后参考论文时迅速发现重要的部分。然后,我为每篇论文做笔记。在本例中,注释主要围绕度量(即,方法、公式)。如果是一个应用程序的文献综述(例如,recsys、产品分类、欺诈检测),说明将侧重于方法、系统设计和结果。
对于大多数论文来说,第二次通过就足够了。我已经捕获了关键信息,如果需要,可以在未来参考它。尽管如此,如果我读论文作为文献综述的一部分,或者如果我想巩固我的知识,我有时会做第三步。
阅读只为心灵提供知识材料;是思考使我们读到的东西成为我们的。
-约翰·洛克
在第三关中,我将论文中常见的概念综合成自己的注释。各种论文都有自己的方法来衡量新颖性、多样性、偶然性等,我把它们合并成一个音符,并比较它们的利弊。在这样做的时候,我经常发现笔记和知识中的空白,不得不重温原始论文。
最后,如果我认为它对其他人有用,我会写出我所学到的并在网上发布。相对于从头开始,有我的笔记作为参考让写作容易得多。这导致了诸如:
在深入你的下一个项目之前,花一两天时间浏览几篇相关的论文。我相信从中长期来看,这将为您节省时间和精力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28