
数据科学家是当今最受欢迎的专业人士之一。随着数据在现代商业中继续发挥越来越突出的作用,这个行业只会变得更有价值。考虑到这一前景,这是一个理想的时间追求作为一个数据科学家的职业生涯。
成为一名数据科学家可能是一个有回报和有利可图的职业。劳工统计局预计,到2029年,这些工作岗位将增长15%,远快于全国平均水平。数据科学家2019年的平均工资为122,840美元。
你可能不需要更多关于你为什么应该成为一名数据科学家的说服力,但如何做到这一点可能不太明显。以下是开始数据科学职业生涯的一步一步指南。
和大多数职业一样,你需要接受适当的教育才能成为一名数据科学家。理想情况下,你应该获得相关领域的本科学位,如计算机科学、信息系统或数据分析。大多数专业数据科学家也拥有硕士学位,通常在数据科学中的一个更专业的领域。
如果你已经有了一个学位,你不一定需要回到学校去读一个更相关的学位。不过,你应该看看在线课程,在那里你可以学习一些数据科学课程。寻找一些额外的认证和许可证也将证明是有帮助的。
你在课堂上学到的技能并不是成为一名数据科学家所需要的唯一教育。您还应该考虑学习各种编程语言,并寻求实践经验。你可以找到大量的书籍和在线课程来帮助你发展这些技能。
要找到一份数据科学家的工作,你需要的不仅仅是教育。大多数公司也会寻找你技能的切实证据。Mohammad Shokoohi-Yekta是苹果公司的前高级数据科学家,他说你应该对代码和应用数据科学感到舒服,而不是理论上的。
最好的方式,你可以显示你的舒适和知识在这方面是通过一个投资组合,你的工作。尽早开始参与实际操作的数据科学项目,并将它们编译成投资组合。你可以通过自由职业者的数据工作和你感兴趣的领域的宠物项目来做到这一点。
您的投资组合应该以各种不同的数据科学项目为特色,以展示您的多才多艺。您应该演示各种编程语言、行业和项目类型的技能。如果你能参加任何与数据科学相关的比赛,你在这些比赛中的工作将是一个出色的投资组合。
一旦你有了相关的教育和一个相当大的投资组合,是时候开始寻找一个职位了。
虽然多才多艺总是有帮助的,但你可能会有更好的运气,以特定的资格和认证为目标的利基行业。例如,所有国防部承包商都需要符合CMMC的规定,这样你就可以获得这个认证,并更好地获得国防部的工作机会。
记住给每个潜在的雇主量身定制你的简历和求职信。强调你的技能和经验是最相关的特定行业和职位在手头。除了通过Inside这样的网站申请工作之外,还要在LinkedIn上发展你的关系网,努力在网上建立一个值得尊敬的网站,让雇主注意到你。
一开始你可能无法得到一个数据科学家的职位,这也没关系。事实上,最好先申请一个相关但更入门级的职位,比如数据分析。你可以从那里发展你的事业。
在职经验是你推进事业的最佳资源。有鉴于此,试着不要对你接受的第一个职位过于挑剔。如果你得到了一份数据相关领域的稳定工作,但这不是你理想的职位,你可能仍然想接受它。将您的第一份数据工作视为一个启动点。
拥有50到500名员工的公司是你在数据科学领域的第一份工作的理想规模。在这些中型企业中,你可以从资深数据科学家那里学习,并有很多提升的机会。一旦你开始在你的第一个职位上工作,采取主动,尝试在尽可能多的项目上工作,而不是让自己变得单薄。
你在公司里寻找的新机会越多,你获得的相关经验就越多。当你工作的时候,在你目前的业务和其他公司寻找晋升的机会。如果你表现出主动性和非凡的职业道德,你很快就会成为一名数据科学家。
在数据科学领域开始职业生涯永远不会太晚。但如果你知道这是你想做的,就不要拖延。你可以从今天开始获得你需要的技能和经验。成为一名数据科学家并不容易,但是如果您遵循这些步骤,您可以在数据科学领域享受漫长而有回报的职业生涯。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28