京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者Yulia Lukashina,技术作家。
我完全相信每个人都能做好(赚到好钱!)只有在他们喜欢做的工作中。如果你对你的任务感到无聊,每天都不得不强迫自己,你就不能交付高质量的结果。
但如果数据科学让你感到温暖和轻盈,那么你就选对了打开的大门。你到底是怎么知道的?
或者你的仪表板,你的管道,或者你正在建造的任何东西。你感觉像一个工匠看着他的创作,享受着它的完美。
您对添加的每一行代码都感到更高兴,使您更接近结果。你喜欢打字。您喜欢毫不费力地从记忆中回忆函数,并将它们融入您以前概述的处理逻辑中。
你喜欢学习新的函数和扩大你的“词汇量”。你觉得自己就像一个外语课程的学生,开始理解以前是个谜的单词。
长代码并不总是质量的标志。但你也喜欢优化!您喜欢用刚刚学习的包中的现有函数替换笨拙的自发明函数。
或者您甚至向GitHub提交一个新包,让更多的人使用它!
您喜欢优雅的代码行的外观,它取代了复杂且不可伸缩的解决方案。你喜欢回到你写过的东西,让它变得更好。
嗯,如果您有一个最后期限要掌握,错误消息可能会非常令人沮丧。但好奇心总是好兆头!
你认为,
哇,我的宝贝和我说话!
并咨询搜索引擎的含义。然后您学习工具或编程语言的一个新的方面。你很高兴消费新知识,获得一个达到智慧新水平的机会。
是的,错误信息让我们继续前进!
即使它们一点也不比旧的好。即使它们乱七八糟,违反直觉,您仍然喜欢学习新的数据科学工具。只是因为它让你觉得自己像一个在沙盒里的孩子,建造一个没有人会住的沙堡。
您喜欢深入到新工具并抓住其背后的逻辑。你喜欢逆向工程,你不认为这是浪费你的时间。
每一个新的工具都为你打开了新的思维方式,打开了新问题的新视角,打开了旧分析方法的新角度。
而且它也可能为你的数据科学简历增加价值!
你可能是一个害羞的人,避免公开演讲或在大量观众面前做报告。但你不会克制地回答你最好的朋友关于你工作的问题。你在半意识的层面上为自己的专业领域感到自豪。
你谈论它不是因为你喜欢说话和给人留下深刻印象,而是因为你的职业是你身份的一部分。你可以做你自己,分享你认为重要的东西。
你喜欢在他们的脸上看到理解,理解一件复杂的事情的喜悦,这件事情曾经是激动人心的魔法。你喜欢指导你的学生或同事通过设置,回答他们的问题,消除他们对自己能力的怀疑。
你喜欢培养新一代的数据科学家,或者至少是超级用户。你会感觉到越来越多的人加入了你的秘密数据科学“集团”。
你得到的是原始数据,它没有显示出任何系统化的迹象。那会让你发疯的!
然后,一步一步地,你做一些数据清理,转换它,然后--瞧!-您可以看到清晰的维度、模式和可能的依赖关系。这就像是从飞机的窗户上看飞机起飞时。你当时站在机场大楼附近,但后来你逐渐变得越来越高,突然间你立刻看到了整个城市!
…包括你每周去附近的杂货店。你有一个清单,你有一个计划,哪些货架过去,按什么顺序。不是说你的时间太少,但优化购物路线似乎只是一件很自然的事情!
好吧,这可能是一种夸张。我的观点是,如果你热爱数据科学,你可以在空闲时间继续做。
当我在两个让我感到快乐的领域--数据科学和技术写作--定居后,我的职业生涯开始更加有机地发展。我不再为下一个漂亮的头衔而战。我吸收了新知识,却不考虑眼前的回报。这种态度开始得到回报,尽管确实需要一点耐心。
当你以良好的感觉结束一天时,第二天早上你会更有效率。当你散发出冷静和自信时,你就可以不再担心工作竞争。公司会因为你是一个理性和安全的人而雇佣你:除了是一个高效的数据科学家!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27