京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者安德里亚·劳拉,自由作家
“数据科学家”的工作岗位和个人资料每年都在变化。它的工资也是如此,有趣的是,两者都在不断上涨。
随着数据科学家的平均工资突破12.5万美元大关,职位空缺数量增长650%,尽管总体放缓,但这一职位的需求在整个商业市场中表现出了强劲的势头。
从用户在线活动的各个角落收集到了大量的数据。这些数据需要很好地存储、维护和分析,并需要开发系统,以便很好地管理这些数据。数据科学家基本上是数据和技术专家,他们倾向于做好这项工作。像数据分析师、数据工程师和商业智能分析师这样的职位属于相同的权限。
本职位描述包括:
上述职务说明要求在若干领域具有一系列专门知识。此外,在开始从事数据科学之前,您还需要了解数据主要包括数字。因此,如果你不喜欢与数字打交道,那么成为一名数据科学家对你来说可能不是一个很好的选择。
数据科学家的必备技能包括:
1。首先,您需要了解编程:上面所述的工作描述清楚地表明,数据科学家倾向于开发算法和系统,以筛选大量数据,用于业务开发。只有那些对计算机编程有扎实理解的人才能开发出这样的解决方案。这里的软件专门化包括:
2。对数学的热爱:作为一名数据科学家,你会一次又一次地要求你的高中数学技能,包括概率和统计,以及基本的代数和微积分概念。所以,如果你打算成为一名数据科学家;尽快刷这些技能。
3。数据分析专业:存储和同化大量数据被称为大数据。正如前面的工作描述中所述,数据科学家需要开发模型,以帮助获取和分析获取的数据,从而开发有意义的模型和解决方案。这种大数据应用程序开发需要SQL(顺序查询语言,允许算法使用查询调用和获取特定格式的数据)或Hadoop(一种软件库,最终在计算设备集群中分发大数据,以进行更好的分析)方面的专业知识。Spark可以与Hadoop结合使用来处理大型非结构化数据集。
4。讲故事技巧:仅仅收集和分析数据是不够的。数据科学家需要从数据集中处理出有意义的输出,并以利益相关者可以理解和使用的方式呈现它们。因此,它们需要包括各种讲故事的技术,包括数据可视化,以确保输出得到良好的呈现。各种数据可视化工具如Matplotlib、Ggplot和d3.js等都可以用于此目的。要成为一个能干的数据科学家,你至少应该精通其中的一个。
5。熟练地理解和部署机器学习是必须的:作为一名数据科学家,您必须处理各种格式的大量数据,包括结构化和非结构化格式。机器学习将帮助你开发算法,有效地筛选并利用这些数据进行预测。因此,要成为一个更好的数据科学家,你必须掌握机器学习的概念。
6。对业务的透彻理解:作为一名数据科学家,您倾向于通过用户数据来开发业务问题的解决方案。但是,为了有效地开发这些解决方案,您首先需要对业务需求和您倾向于使用大数据解决方案来解决的问题有一个表单。只有这样,您才能开发并提出一个有效的解决方案。
数据科学是现代最有前途的职业之一。所以,如果你想把自己看成一个数据科学家,试着在某种程度上获得上面提到的技能。有各种在线教程可以帮助您了解python、SQL和其他必要的概念。尝试浏览它们,以便对数据科学世界有一个定义良好的介绍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27