京公网安备 11010802034615号
经营许可证编号:京B2-20210330
最好的技术人员解决错误的问题注定会失败和沮丧。然而,我们经常看到伟大的Python开发人员和SQL专家创造出出色的技术,但对业务几乎没有什么价值。在某些情况下,情况要糟糕得多。这些解决方案的价值并不值得商榷,而是耗尽了资源,混淆了业务流程。作为数据工程师,我们有责任充分理解我们的解决方案所支持的业务流程。
作为高级数据工程师,我们应该非常了解业务,我们建议如何提高效率和增强工作。一个大胆的声明,但我会舒舒服服地死在这把剑上,和任何不同意的人战斗。当然,打个比喻,因为我没有剑,与其说是斗士,不如说是个情人。关键是,我们需要了解业务,有一个重要的工具可以帮助我们实现这一目标。
在我们开始之前,读一下朱利安·科维齐克的这句精彩的话,它简洁地指出了问题:
“如今,通过理解底层数据和与之相伴随的业务流程来塑造数据似乎不如移动数据的能力重要。”
他在这里说的是,我们太忙于将数据从那里转移到这里,以及我们可以使用的所有酷的工具,我们忘记了我们首先做这一切的原因。数据工程师从多个来源收集原始数据,并创建可供人和机器有效使用的可消耗软件包。对我们的消费者来说,介于两者之间的一切都是一个黑匣子。为什么我们把大部分时间和精力都花在黑匣子上,而不是消耗性的包装上?
愤世嫉俗的观点会说,这是因为黑匣子是有趣的部分。虽然这可能是等式中的一个因素,但我相信我们中的许多人只是不太了解业务流程,无法有效地将时间花在改进可消费软件包上。让我说清楚。更好地理解业务是你的工作和责任。不容易啊。在一个完美的世界里,我们会有很好的文档可以依赖,但是…嗯…你知道的。这就是我们数据工程工具箱中最重要的工具。
问题。就在那儿。问题。很多。好的。坏的。尴尬的那些。所有的问题!这对你来说足够强调了吗?你想从好到好吗?问问题并充分理解您支持的业务流程。我怎么强调都不为过,与一个只关心技术的数据工程师交谈是多么令人沮丧,而我是一名数据工程师。想象一下,你是一名财务分析师、人力资源主管或销售人员。他们需要可消耗的数据包,但可能不理解技术术语。除了他们使用的特定工具之外,他们可能对技术知之甚少。
因此,仅仅提出问题是不够好的。相反,我们需要用企业理解的语言提出正确的问题。忘掉表、数据源和主键吧。这些事情来得更晚,往往是由对更多人的更多问题决定的。相反,询问人们在日常工作中做了什么。询问业务目标是什么。工作如何通过各种系统流动。问,直到你完全理解公司使用的业务流程。然后记录下来。
编写业务文档。当然,做这件事是他们的工作,但你才是需要它的人。创建流程图,包括业务使用的任何工具。包括人们与流程交互的地方。然后和业务一起审查,问更多的问题。您可能会发现没有一个人能理解所有的事情,所以您将与几个人交谈并最终统一业务流程。您编写的文档将成为业务中有价值的工件。砰!你对公司来说是无价之宝。我敢说,你刚成为一名高级数据工程师?
作为数据工程师,理解我们的解决方案支持的业务流程是我们的责任。如果不充分了解这些过程,我们注定会受挫和失败。我们生活的这个不完美的世界通常没有很好的记录,而我们数据工程师是需要弄清楚这一切的人。通过提出大量的问题,我们可以更好地理解我们的解决方案支持的业务流程,这使我们能够不断改进我们工作的影响。所以,开始吧。质疑一切!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04