
几年前,数据科学作为一种需求旺盛、利润丰厚的职业道路出现,出于几个原因,它仍然如此。首先,公司比以前收集了更多数量和更多类型的信息,代表们希望从中获得洞察力。
另一个原因是,人们意识到,即使在充满挑战的市场中,有效使用数据也能提高竞争力。这里有六个行业现在正在招聘数据科学家,在可预见的未来可能会继续这样做。
一项对顶级大数据行业的研究显示,电信和信息技术位居榜首。此外,预测预计该行业的价值将在2023年达到1052亿美元,高于2019年的590亿美元。一个例子是,南非品牌Telkom为女性创造了在该公司担任数据科学专家的机会。
电信公司的商业领袖可以利用数据科学家的专业知识来决定何时何地推出5G技术。他们还可以开始分析客户服务电话的趋势,以检测和排除常见问题。
交通部门依赖数据科学专业知识的机会也已经成熟。英国政府官员最近宣布打算释放位置数据的潜力。人们相信,这些信息可以支持电动汽车充电基础设施,减少排放影响,并使旅行更加安全和愉快,等等。
另一个趋势是使用乘客的手机数据来衡量人们依赖公共交通服务的频率。洛杉矶当局已经采取了这种方法。数据科学家可以帮助决策者从收集的信息中收集有价值的细节。
健康保险行业的人也对雇佣数据科学家更感兴趣。这样做有助于他们掌握新的趋势,比如对自我保险计划越来越感兴趣。例如,统计数据显示,29.2%的中型雇主选择了自我保险。数据科学家可以评估这种变化,以及跟踪其他值得注意的模式。
健康保险公司的领导人希望了解哪些因素使投保人更有可能提出索赔,或者该国哪些地区的客户最多。数据科学可以回答这些问题和其他问题。
银行业的领导者也意识到雇佣数据科学家是值得的。在一个例子中,美国银行分析了超过4.1万条社交媒体评论,发现了数千条关于限购的虚假谣言。然后,代表们可以做出澄清,以防止声誉受损。
银行还分析数据,以识别可疑交易或支出模式。他们在决定是否向客户提供贷款时也是这样做的。一些银行客户也受益于数据分析,比如如果应用程序功能告诉他们,他们在给定的一个月里可能会比平时花费更多。
零售品牌在高管意识到更清楚地了解可用信息有助于满足客户需求后,雇佣数据科学家。例如,一项假日购物研究显示,在两年的时间里,人们搜索“礼品盒”这个词的频率是其他时间的1.85倍。这些结果帮助零售商调整他们提供的产品。
从与新冠肺炎相关的困难中恢复的努力也可能推动零售领域的数据科学家招聘活动。这场流行病改变了人们购物的方式和他们更喜欢购买的东西。数据专家将在发现这些新趋势、向零售高管提供采取行动和增加利润所需的统计数据方面发挥至关重要的作用。
数据科学家也将在生命科学和制药部门找到工作。伊莱恩·奥德怀尔作为生命科学数据科学家与埃森哲合作。“项目通常侧重于在整个生命科学行业应用高级分析,通常与数据和分析策略设计相结合。我们位于爱尔兰的团队所做的大部分工作都与商业药物产品的制造和供应有关,例如,优化调度以提高质量控制实验室的生产率和效率,“她说。
由于新冠肺炎仍然是全球大部分地区的严重威胁,这些行业的领导人可能会意识到,数据对于应对全球流行病带来的额外压力至关重要。数据还将帮助这些公司开发新药,减少错误,最大限度地减少召回,无论是新冠肺炎治疗还是其他治疗。
这些只是数据科学家今年及以后可以找到工作的众多行业中的一部分。今天的高管们希望摆脱以前主要依靠直觉和经验做决定的做法。数据科学家有知识和技能来揭示可能被忽视的洞察力,使它们对几乎任何行业都有价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04