
作者:Python进阶者
来源:Python爬虫与数据挖掘
问题:想向大佬们求教个问题,如果我有这样的需求,如何完成:
1、将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去。
2、将文件夹下所有文件的第二张表合并。我做出来了,核心部分没有用pandas,而且逻辑比较繁琐。想求一用pandas解决的简洁方案。
问题一和问题二的思路都挺常规的,就是取对应的表格,然后进行合并即可,这里仍然使用pandas来进行实现!
问题一:将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去。
这里基于之前【(这是月亮的背面)】提供的代码,我稍微做了些修改,代码如下:
# coding: utf-8 # 将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去 from pathlib import Path import pandas as pd
path = r'E:PythonCrawler有趣的代码Python自动化办公将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去' data_ex1 = pd.read_excel('ex1.xlsx', sheet_name='df1')
data_ex2 = pd.read_excel('ex2.xlsx', sheet_name='df2')
result = pd.concat([data_ex1, data_ex2], ignore_index=True)
result.to_excel('将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去.xlsx', index=False, encoding='utf-8')
print('添加和合并完成!')
代码运行之后,会生成一个新的excel文件,如下图所示:
合并的结果如下图所示:
完成之后,我发给【有点意思】大佬看,不过这个答案勉强符合他的意思,他后来自己也写了一个代码,能满足自己的需求,这里发给大家看看。
问题二:将文件夹下所有文件的第二张表合并
这里基于之前【(这是月亮的背面)】提供的代码,我稍微做了些修改,代码如下:
# coding: utf-8 # 合并所有表格中的第二张表格 from pathlib import Path import pandas as pd
path = Path(r'E:PythonCrawler有趣的代码Python自动化办公将文件夹下所有文件的第二张表合并')
data_list = [] for i in path.glob("*.xls*"): # data = pd.read_excel(i, sheet_name='df2') data = pd.read_excel(i, sheet_name=1)
data_list.append(data)
result = pd.concat(data_list, ignore_index=True)
result.to_excel(path.joinpath('取所有excel表的df2表进行合并.xlsx'), index=False, encoding='utf-8')
print('添加和合并完成!')
代码运行之后,会生成一个新的excel文件,如下图所示:
合并的结果如下图所示:
细心的小伙伴可能发现代码中的第9行,我其实是注释了,一开始我测试的表格,命名规则很有规范,每个工作簿都有df1,df2,df3三张表格,所以在合并的时候直接指定了表名,但是这样写就会有问题,万一有个表格中没有df2工作表,这个代码肯定就会报错了,所以在【(这是月亮的背面)】大佬的指导下,使用了sheet_name=1参数,以索引来定位第二张表格,恰到好处,前提条件是你的Excel表格中必须要有第二张表格,否则就会出现下图的错误。
我是Python进阶者。本文基于粉丝针对Python处理Excel指定表格合并的提问,给出了一个利用Python基础+pandas处理的解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14