京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Python进阶者
来源:Python爬虫与数据挖掘
问题:想向大佬们求教个问题,如果我有这样的需求,如何完成:
1、将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去。
2、将文件夹下所有文件的第二张表合并。我做出来了,核心部分没有用pandas,而且逻辑比较繁琐。想求一用pandas解决的简洁方案。
问题一和问题二的思路都挺常规的,就是取对应的表格,然后进行合并即可,这里仍然使用pandas来进行实现!
问题一:将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去。
这里基于之前【(这是月亮的背面)】提供的代码,我稍微做了些修改,代码如下:
# coding: utf-8 # 将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去 from pathlib import Path import pandas as pd
path = r'E:PythonCrawler有趣的代码Python自动化办公将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去' data_ex1 = pd.read_excel('ex1.xlsx', sheet_name='df1')
data_ex2 = pd.read_excel('ex2.xlsx', sheet_name='df2')
result = pd.concat([data_ex1, data_ex2], ignore_index=True)
result.to_excel('将A文件中名为a的sheet和B文件中名为b的sheet合并到一个sheet中去.xlsx', index=False, encoding='utf-8')
print('添加和合并完成!')
代码运行之后,会生成一个新的excel文件,如下图所示:
合并的结果如下图所示:
完成之后,我发给【有点意思】大佬看,不过这个答案勉强符合他的意思,他后来自己也写了一个代码,能满足自己的需求,这里发给大家看看。
问题二:将文件夹下所有文件的第二张表合并
这里基于之前【(这是月亮的背面)】提供的代码,我稍微做了些修改,代码如下:
# coding: utf-8 # 合并所有表格中的第二张表格 from pathlib import Path import pandas as pd
path = Path(r'E:PythonCrawler有趣的代码Python自动化办公将文件夹下所有文件的第二张表合并')
data_list = [] for i in path.glob("*.xls*"): # data = pd.read_excel(i, sheet_name='df2') data = pd.read_excel(i, sheet_name=1)
data_list.append(data)
result = pd.concat(data_list, ignore_index=True)
result.to_excel(path.joinpath('取所有excel表的df2表进行合并.xlsx'), index=False, encoding='utf-8')
print('添加和合并完成!')
代码运行之后,会生成一个新的excel文件,如下图所示:
合并的结果如下图所示:
细心的小伙伴可能发现代码中的第9行,我其实是注释了,一开始我测试的表格,命名规则很有规范,每个工作簿都有df1,df2,df3三张表格,所以在合并的时候直接指定了表名,但是这样写就会有问题,万一有个表格中没有df2工作表,这个代码肯定就会报错了,所以在【(这是月亮的背面)】大佬的指导下,使用了sheet_name=1参数,以索引来定位第二张表格,恰到好处,前提条件是你的Excel表格中必须要有第二张表格,否则就会出现下图的错误。
我是Python进阶者。本文基于粉丝针对Python处理Excel指定表格合并的提问,给出了一个利用Python基础+pandas处理的解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12