
CDA数据分析师 出品
作者:CDALevel Ⅰ持证人
岗位:数据分析师
行业:大数据
背景
在前文(Python实现基于客观事实的RFM模型)中阐述了如何运用分箱的技巧讲客服进行分群,有兴趣的读者可以去回顾 一下。利用流行的编程语言---Python及分箱技巧进行RFM模型构建,结果发现,此方法有效了降低人工分群带来的主观性影响,然而,会出现类似偏态的现象。其原因是在于分箱的操作对R值、F值、M值都进行了一遍。因此,为解决这种类似偏态的问题,本文将利用机器学习中的K-Means聚类对客户进行分群。
如今新基建大数据、人工智能行业在迅速的发展,而机器学习是其中不可或缺的一环,机器学习强调的是利用人脑一般从历史的数据中学习到经验并运用与未来的判断中。而K-Means模型则是机器学习中聚类算法中的一块,本文结合Python实现K-Means聚类算法的编写,同时应用于客户分群中。
本文采用Anaconda进行Python编译,主要涉及的Python模块:
本章分为三部分讲解:
"人以类聚,物以群分",这句话就是K-Means模型的思想点。其中,K代表类别数量(Tips:在机器学习中,自变量又叫预测变量,因变量又叫目标变量)。而Means代表每个类别中样本的均值,因此这个Means也即均值的意思(Tips:这里的样本通俗理解就是一个记录行)。
K-Means聚类是以距离作为样本间相似度的度量标准,将距离相近的样本分配至同一个类别。样本间的度量方式可以是欧氏距离,马氏距离,余弦相似度等,K-Means聚类通常采用欧氏距离来度量各样本间的距离。
欧式距离又称欧几里得度量,为常见的两点之间或多点之间的距离表示法,如类别$x=(x{1},x{1},...,x{n})$与类别$y=(y{1},y{2},...,y{n})$间的距离如下式:
马氏距离同样也是一种距离的度量,是由马哈拉诺比斯(P. C. Mahalanobis)提出的,表示样本间的协方差距离。它是一种有效的计算两个未知样本集的相似度的方法。这可以看作是欧式距离的修正,修正了欧式距离中各个维度尺度不一致且相关的问题。
对于一个均值为$mu=(mu{1},mu{2},...,mu_{p})^{T}$,协方差矩阵的S的多变量$x=(x^{1},x^{2},...,x^{p})^{T}$,其马氏距离为下式
输入:样本集D,设定类别数目K
输出:类划分(K个类)
以流程图展现算法步骤,
在上述原理和算法步骤可能有读者不是很清楚,那么接下来将以例子的形式更加具体的展现K-Means是如何进行聚类的。首先利用scikit-learn库中的datasets接口生成随机样本点作为我们的聚类输入值,以可视化形式展现,如下图:
从上图可以看出输入的样本点肉眼可见可以分成3类,那么怎么用K-Means将此样本集识别出3类呢。这里用到scikit-learn库中的KMeans接口,该接口的训练算法与上述算法是大同小异的。其中稍有差别的是,初始的类中心点的选择并不是随机的,而是选择k-means++的初始化方案,将类中心化为彼此原理的点。具体而言将在代码体现。其次不同的是,结束条件,上述算法步骤的结束条件时判断各类别中的样本是否发生改变,而KMeans接口中的结束条件是类似于利用损失函数:$||Means{old}-Means{new}||$,该式子的意思是计算旧类中心点于新类中心点的距离,如果该距离小于给定的值$epsilon$,则结束,输出类别。
上述样本点的构建及可视化的代码如下
import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.datasets import make_blobs
sns.set_style('darkgrid') # 中文显示问题解决 plt.rcParams['font.sans-serif'] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False # 生成例子数据 np.random.seed(123)
centers = [[2, 1], [6, 5], [10, 3]]
n_clusters = len(centers)
X, labels_true = make_blobs(n_samples=300, centers=centers, cluster_std=0.7)
plt.scatter(X[:,0],X[:,1],c='red',marker='o',
label='样本')
plt.legend()
plt.savefig('example.jpg',dpi=200)
plt.show()
代码解读:
首先设置可视化的主题为seaborn下的黑格子状态,其次选择围绕(2,1),(6,5),(10,3)这三个点(类中心点)构造样本集。运用make_blobs()函数即可构建样本集,该函数中可以设定样本集的数量n_samples和方差cluster_std。最后以散点图形式展现。
最后调用KMeans接口,将该样本集进行聚类,用可视化的方式对聚类后结果进行展现,结果如下图
可以明确看到,聚类结果为3类,和我们预期的是一致的,接下来看类别中心点于原设计的中心点对比,如下表。
从上表可以看出,聚类中心点是存在微小差异的,这也说明KMeans接口时利用损失函数进行迭代的。相关代码如下
# K-Means聚类 from sklearn.cluster import KMeans
sns.set_style('darkgrid') # 中文显示问题解决 plt.rcParams['font.sans-serif'] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False # 模型拟合 k_means = KMeans(init="k-means++", n_clusters=3)
k_means.fit(X) # 可视化结果 fig = plt.figure(figsize=(15,8))
colors = ["#4EACC5", "#FF9C34", "#4E9A06"]
k_means_cluster_centers = k_means.cluster_centers_
k_means_labels = k_means.labels_
ax = fig.add_subplot()
for k, col in zip(range(n_clusters), colors):
my_members = k_means_labels == k
cluster_center = k_means_cluster_centers[k]
ax.plot(X[my_members, 0], X[my_members, 1], "w", markerfacecolor=col, marker="*")
ax.plot(
cluster_center[0],
cluster_center[1], "o",
markerfacecolor=col,
markeredgecolor="k",
markersize=6,
)
ax.set_title("KMeans聚类结果") #ax.set_xticks() #ax.set_yticks() plt.savefig('例子结果.jpg',dpi=200)
代码解读:
KMeans(init="k-means++", n_clusters=3)这段代码即将估计器拟合上述的样本集。其中,init参数即为上述所讲KMeans++的初始化选择方式。而后的参数为设定分成多少类。
拟合后的KMeans估计器是可以进行调用的,这里我们调用类中心点(k_means.cluster_centers_)和样本所属类别(k_means.labels_)。
最后一段代码是结合类中心点和样本所属类别进行可视化展示,可以非常明确的看到聚类后的结果。(TIps:最后保存图片的dpi是调整像素的,在Python编译器里面默认保存的图像像素普遍都不高,读者可以适当的设置。)
K-Means模型构建(代码)
有了数据和scikit-learn库中的KMmeans接口的了解,那么接下来先上完整代码和解释,模型构建的代码如下
# RMF实战 import pandas as pd import seaborn as sns
sns.set_style('darkgrid')
# 中文显示问题解决
plt.rcParams['font.sans-serif'] = ["SimHei"]
plt.rcParams["axes.unicode_minus"] = False
## 数据读取 data = pd.read_excel('rfm.xlsx')
X = data.drop(columns = 'user_id')
## KMeans模型构建
k_means = KMeans(init="k-means++", n_clusters=8,random_state=123)
k_means.fit(X)
## 类别查看 data['categories'] = k_means.labels_
## 相关属性查看
k_means.cluster_centers_
k_means.verbose
## 机器帮助判断(等深分箱)
result = k_means.cluster_centers_
reuslt = pd.DataFrame(result)
reuslt['R_label'] = pd.qcut(reuslt[2],2,labels = range(1,3)).astype('int')
reuslt['F_label'] = pd.qcut(reuslt[0],2,labels = range(1,3)).astype('int')
reuslt['M_label'] = pd.qcut(reuslt[1],2,labels = range(1,3)).astype('int')
## 客户分类打标签 for i,j in data.iterrows(): if j['categories'] == 0 or j['categories'] == 2: data.loc[i,'客户类别'] = '一般发展用户' if j['categories'] == 1 or j['categories'] == 5: data.loc[i,'客户类别'] = '重要价值用户' if j['categories'] == 3 or j['categories'] == 7: data.loc[i,'客户类别'] = '重要保持客户' if j['categories'] == 4 or j['categories'] == 6: data.loc[i,'客户类别'] = '一般挽留客户' # 可视化
cate_sta = data['客户类别'].value_counts()
cate_sta = pd.DataFrame(cate_sta)
sns.barplot(y='客户类别', x=cate_sta.index, data=cate_sta)
plt.title('用户类别统计')
plt.show()
从上图可以看到,利用KMeans的估计器,我们已经得到了每个id所属的类别,那么现在的问题是,该怎么判断用户是哪种客户类别呢(Tips:用户类别分为8种,不清楚的读者可以回顾前文),这时候就需要用到类中心点,通过判断类中心点来给每种分类一个判断,下表为每个类别对应的类中心点。
有了每个类别的类中心点,我们就需要对每个类赋予RFM模型中的客户类别,本文在这方面选择分箱的技巧进行分类。
对类中心点实现等深分箱,与前文运用等距分箱不同,这里采取的是指定每个类别种的个数是一致的,这也符合RFM模型中的每个值都有4个高,4个低。在Python中利用pd.qcut()函数进行分箱,其参数与等距分箱大同小异,有兴趣的读者可以研究。最后以"2"代表高,"1"代表低。并按照RFM的规则将每种类别赋予一个客户类别,结果如下表:
最后,以柱状图的形式展示该份数据集中的客户类别总数
具体数值如下表:
与前文(Python实现基于客观事实的RFM模型)对比,本文将该份数据集中的用户分为4类(一般发展用户、重要保持客户、一般挽留客户、重要价值用户),而前文将用户分为5类(一般发展用户、一般挽留用户、重要挽留客户、一般保持用户、重要发展用户)。可以看出,两者都识别出了一般发展用户的信息,且其所占比例也是最多的。不同之处在于,基于KMeans聚类模型的RFM模型可以挖掘出重要保持客户、重要价值用户的信息,而基于客观事实的RFM模型对一般挽留用户较为敏感。
因此,对于决策者而言,每个模型得到的RFM模型是不一致的,而决策者应该从模型结果的相同点入手,如该份数据,两个模型都发现了一般发展用户所占比例是最大的,代表其解释性强。而对于模型间的不同点,则需要更深入的探讨如何取舍的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27