
作者:俊欣
来源:关于数据分析与可视化
一般在Python当中,我们用于绘制图表的模块最基础的可能就是matplotlib了,今天小编分享几个用该模块进行可视化制作的技巧,帮助你绘制出更加高质量的图表。
同时本篇文章的第二部分是用Python来制作可视化动图,让你更加清楚的了解到数据的走势
最开始,我们先导入数据集,并且导入我们需要用到的库
import pandas as pd import matplotlib.pyplot as plt
plt.style.use("seaborn-darkgrid") # 读取数据 aapl = pd.read_csv("AAPL.csv") print(aapl.head())
output
Date Open High ... Close Adj Close Volume 0 2021-9-30 143.660004 144.380005 ... 141.500000 141.293793 88934200 1 2021-10-1 141.899994 142.919998 ... 142.649994 142.442108 94639600 2 2021-10-4 141.759995 142.210007 ... 139.139999 138.937225 98322000 3 2021-10-5 139.490005 142.240005 ... 141.110001 140.904358 80861100 4 2021-10-6 139.470001 142.149994 ... 142.000000 141.793060 83221100
上面的代码我们用到的是“苹果”公司2021年的9月31日到12月31日的股价走势,我们先来简单的画一张折线图,代码如下
plt.figure(figsize=(12,6)) plt.plot(aapl["Close"])
output
上面的折线图看着就有点单调和简单,我们就单单只可以看到数据的走势,除此之外就没有别的收获,我们甚至都不知道这条折线所表示的意义,因为接下来我们来进行一系列的优化
第一步我们先给图表添加标题以及给X轴、Y轴设置标签,代码如下
plt.figure(figsize=(12,6)) plt.plot(aapl["Close"])
# 添加标题和给Y轴打上标记 plt.ylabel("Closing Price", fontsize=15) ## 收盘价 plt.title("Apple Stock Price", fontsize=18) ## 标题:苹果公司股价
output
现有的这个Y轴代表的是收盘价,要是我们还想再往图表当中添加另外一列的数据,该数据的数值范围和已有的收盘价的数值范围不同,如果放在一起,绘制出来的图表可不好看,如下
plt.figure(figsize=(12,6)) plt.plot(aapl["Close"])
# 第二根折线图 plt.plot(aapl["Volume"])
# Y轴的名称和标记 plt.ylabel("Closing Price", fontsize=15) plt.title("Apple Stock Price", fontsize=18)
output
可以看到我们代表股价的那条蓝线变成了水平的直线,由于它的数值范围和“Volume”这一列当中的数据,数值范围差了不少,因此我还需要一个Y轴,来代表“Volume”这一列数据的走势,代码如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴的标记 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 添加标题和Y轴的名称,有两个Y轴 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18)
output
上面的代码我们通过twinx()方法再来新建一个Y轴对象,然后对应的数据是Volume这一列当中的数据,而给Y轴标记的方式也从上面的plt.ylabel()变成了ax.set_ylabel()
接下来给绘制好的图表添加图例,不同的折线代表的是不同的数据,代码如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12)
output
在plt.legend()方法当中的loc参数代表的是图例的位置,2代表的是左上方,具体的大家可以通过下面的链接来查阅
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html
有时候我们感觉图表当中的网格线有点碍眼,就可以将其去掉,代码如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12) # 去掉网格线 ax1.grid(False)
ax2.grid(False)
output
这样出来的图表是不是看着顺眼多了呢?!
有时候我们也想在图表当中添加一些文字,可以是注释也可以是一些赞美性的语言,可以通过代码来实现,如下
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("Closing Price", fontsize=15)
ax2.set_ylabel("Volume", fontsize=15)
plt.title("Apple Stock Price", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12) # 去掉网格线 ax1.grid(False)
ax2.grid(False)
date_string = datetime.strptime("2021-10-31", "%Y-%m-%d") # 添加文字 ax1.text(
date_string, ## 代表的是添加的文字的位置 170, "Nice plot!", ## 添加的文字的内容 fontsize=18, ## 文字的大小 color="green" ## 颜色 )
output
在上面的图表当中,无论是标题还是注释或者是图例,都是英文的,我们需要往里面添加中文的内容时候,还需要添加下面的代码
plt.rcParams['font.sans-serif'] = ['SimHei']
fig, ax1 = plt.subplots(figsize=(12,6)) # 第二个Y轴 ax2 = ax1.twinx()
ax1.plot(aapl["Close"])
ax2.plot(aapl["Volume"], color="r") # 设置Y轴标签和标题 ax1.set_ylabel("收盘价", fontsize=15)
ax2.set_ylabel("成交量", fontsize=15)
plt.title("苹果公司股价走势", fontsize=18) # 添加图例 ax1.legend(["Closing price"], loc=2, fontsize=12)
ax2.legend(["Volume"], loc=2, bbox_to_anchor=(0, 0.9), fontsize=12) # 去掉网格线 ax1.grid(False)
ax2.grid(False) # 添加文字 ax1.text(
date_string, 170, "画的漂亮",
fontsize=18,
color="green" )
output
这样全局的字体都被设置成了“黑体”,文本内容都是用中文来显示
我们还可以给X轴/Y轴添加边框,以及边框的粗细也可以通过代码来进行调整,如下
plt.rcParams["axes.edgecolor"] = "black" plt.rcParams["axes.linewidth"] = 2
同时我们还可以对X轴以及Y轴上面的刻度,它们的字体大小进行设置,代码如下
# tick size ax1.tick_params(axis='both', which='major', labelsize=13)
ax2.tick_params(axis='both', which='major', labelsize=13)
output
出来的图表是不是比一开始的要好很多呢?
接下来给大家介绍一个制作动图的Python库,bar_chart_race,只需要简单的几行代码,就可以制作出随着时间变化的直方图动图,代码如下
import bar_chart_race as bcr import pandas as pd # 生成GIF图像 df = pd.read_csv('covid19_tutorial.csv', index_col=index_col,
parse_dates=parse_dates)
bcr.bar_chart_race(df, 'covid19_tutorial_horiz.gif')
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27