
目前数据分析和机器学习的应用如火如荼,许多人都希望能够参与到这股热潮里。但是令人苦恼的是,学习资料有限,常常无从下手。
特别是一些文科生,会很纠结自己是不是能够转型到数据分析行业,之所以这么纠结。是因为数据分析是一门综合学科,会涉及到编程语言、概率统计、时间序列分析、机器学习算法等等,这是一条不算轻松的道路。
今天我们邀请到了数据挖掘工程师王真达老师为大家分享:《文科生是如何转型数据挖掘工程师》
一、“文科生” 转行数据挖掘历程
二、“技能需求” 数据挖掘工程师(业务)
三、“项目实操流程” 企业产品营销模型
3. 1.天翼看家产品办理预测模型
3.2 模型背景与目标
模型背景
目前省内办理天翼看家用户规模已经达到50余万户,占全省公众宽带用户市场规模达到7%以上,目前日增1200余户,且多数办理用户为农村 市场需求,如何精准预测潜在办理用户,最大程度提高天翼看家产品办理率是目前天翼看家推广的重要任务。
模型目标
针对2020年2月份天翼看家模型2.0进行模型提升优化,构建适合目前产品现状的模型规则,最大程度的预测到农村市场潜在用户,同时扩大套 餐类别,争取覆盖多个套餐类别潜在用户。
3.3 天翼看家已办理用户分布情况
目前全量已办理用户主要分布在畅享自主版,其余套餐虽然数量不及,但是占单类比例还有很大挖掘空间。
3.4 样本选择
样本数据来源:
正样本数据:提取2021.2-4月月办理天翼看家产品的,且剔除宽带、手机、天翼看家均为新办理的用户(新办理用户没有往期消费信息), 剩余用户作为正样本;
负样本数据:提取2021.2-4月对天翼看家产品进行过派单、接触的用户记录,且剔除截止2021.5.12前办理天翼看家的用户,剩余用户作为 负样本;
因果关系取数
• 解释变量(X)取t-1期
• 预测变量(y)取t期
• 训练数据与测试数据
3.5 模型特征
基于前期项目调研,结合天翼看家2.0模型项目经验,共梳理出5大维度,共43个特征,重要特征如下(后面将对每个维度进行特征分析):
3.6 建模过程
使用随机森林作为基分类器,使用Adaboost等进行对比,最终在收敛速度模型准确性上选择RF模型。
3.7 模型评估
3.8 模型应用-营销活动转化率
5.01~5.17日数据,根据实际办理天翼看家情况,增至13个套餐(畅享自主版、其他C+宽带、畅享融合、大流量套餐+ 宽带等),模型输出规模共计664万,其中高概率规模120万,有效支持营销推广。共计转化用户11270户。
3.9 模型关键特征
3.10 特征分析-地域特点(1/4)
城乡属性:
超过70%的加装用户集中在农村,农村用户产品加装概率为9.82%,显著高于城市用户的2.58%。说明天翼看家产品较匹配农村市场,随着城镇化 的发展,农村有大量的留守老人和儿童,这较大程度地催生了农村市场的需求。
3.10 特征分析-地域特点(2/4)
网格单元天翼看家占比:
从趋势图可以看出,随着网格内天翼看家产品占比提高,用户加装天翼看家产品的概率有较为明显的提升趋势。网格单元内占比超过50%的用户中, 平均加装概率超过30%,说明用户的消费具有从众心理,可针对对应区域增加推广力度。
扫描二维码
观看直播
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11