
作者:俊欣
来源:关于数据分析与可视化
“碳达峰、碳中和”是2021年政府在不断强调与非常重视的事儿,那什么是“碳达峰”、什么又是“碳中和”呢?这里小编来为大家科普一下,所谓的“碳达峰”指的是在某一时间点,二氧化碳的排放不再达到峰值,之后逐步回落。
而“碳中和”也就意味着企业、个体与团体在一定时间内直接或间接产生的温室气体排放总量,通过植树造林、节能减排等形式,抵消自身产生的二氧化碳排放,实现二氧化碳的“零排放”。
今天小编就用Python来制作一张可视化大屏,让大家来感受一下近百年来二氧化碳排放的趋势以及给我们所居住的环境造成了什么样的影响。
本地可视化大屏中引用的数据来自于由英国牛津大学知名教授创办的网站“用数据看世界(Our World in Data”,里面收入了各个学科的数据,包括卫生、食品、收入增长和分配、能源、教育、环境等行业进行了分析与可视化展示,十分地全面,并且当中的元数据开放在Github当中
我们导入需要用到的模块
import streamlit as st import plotly.express as px import pandas as pd
我们这次是用到streamlit模块来制作可视化大屏,该模块是基于Python的可视化工具,最初开发出来的目的是给机器学习和数据科学团队使用的。同时我们用plotly.express模块来绘制各种图表,因此图表是具备交互性的,pandas模块来读取数据
@st.cache def get_data(): url_1 = 'https://raw.githubusercontent.com/owid/owid-datasets/master/datasets/Climate%20change%20impacts/Climate%20change%20impacts.csv' url_2 = "https://github.com/owid/co2-data/raw/master/owid-co2-data.csv" df_1 = pd.read_csv(url_1) df_1_1 = df_1.query("Entity == 'World' and Year <=2021") df_2 = pd.read_csv(url_2) return df_1_1, df_2
然后我们来制作整个可视化大屏,首先我们先确认好可视化大屏的布局,如下图所示
然后我们针对每一篇布局来编写代码,首先看到的是标题部分,我们通过streamlit模块当中的markdown方法来实现即可
st.markdown()
然后根据上面的布局设计,我们这么来编写代码
col2, space2, col3 = st.columns((10,1,10)) with col2: year = st.slider('选择年份',1750,2020) ... with col3: ... selected_countries = st.multiselect('选择国家',countries,default_countries) ... col4, space3, col5, space4, col6 = st.columns((10,1,10,1,10)) with col4: st.markdown("""## 二氧化碳和全球变暖之间的关系""") with col5: st.subheader(" 副标题一 ") ... with col6: st.subheader(" 副标题二 ") ...
我们这里使用columns方法来将页面均匀的分成若干列,并且给定特定的宽度,当然每列之间还需要留一点空隙,从美观程度上来考虑,因此才有了变量space对应的是宽度1的空隙
col2, space2, col3 = st.columns((10,1,10))
然后我们针对分割开来的每个区域进行图表的绘制,例如左上方的世界地图,我们用plotly.express当中的choropleth方法来绘制,另外我们添加了时间轴,通过调用streamlit模块当中的slider方法来实现
with col2: year = st.slider('选择时间', 1750, 2020) fig = px.choropleth(df_co2[df_co2['year'] == year], locations="iso_code", color="co2_per_capita", hover_name="country", range_color=(0, 25), color_continuous_scale=px.colors.sequential.Reds) st.plotly_chart(fig, use_container_width=True)
而例如右上方的折线图,同样也是调用plotly.express模块来实现的,其中多选框则是调用了streamlit模块当中的multiselect方法,代码如下
with col3: default_countries = ['World', 'United States', 'United Kingdom', 'EU-27', 'China', 'Canada'] countries = df_co2['country'].unique() selected_countries = st.multiselect('选择国家或者区域性组织', countries, default_countries) df3 = df_co2.query('country in @selected_countries') fig2 = px.line(df3, "year", "co2_per_capita", color="country") st.plotly_chart(fig2, use_container_width=True)
最后的成品如下图所示:
从上面绘制的图表中我们能够看到的是,美国以及加拿大这两国家二氧化碳的排放量一直都很高,超过了包括欧盟、英国以及中国在内的主要经济体。当然近些年各个国家的政府也对该问题相当的重视,制订了相对应的节能减排的应对措施。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14