京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
“碳达峰、碳中和”是2021年政府在不断强调与非常重视的事儿,那什么是“碳达峰”、什么又是“碳中和”呢?这里小编来为大家科普一下,所谓的“碳达峰”指的是在某一时间点,二氧化碳的排放不再达到峰值,之后逐步回落。
而“碳中和”也就意味着企业、个体与团体在一定时间内直接或间接产生的温室气体排放总量,通过植树造林、节能减排等形式,抵消自身产生的二氧化碳排放,实现二氧化碳的“零排放”。
今天小编就用Python来制作一张可视化大屏,让大家来感受一下近百年来二氧化碳排放的趋势以及给我们所居住的环境造成了什么样的影响。
本地可视化大屏中引用的数据来自于由英国牛津大学知名教授创办的网站“用数据看世界(Our World in Data”,里面收入了各个学科的数据,包括卫生、食品、收入增长和分配、能源、教育、环境等行业进行了分析与可视化展示,十分地全面,并且当中的元数据开放在Github当中
我们导入需要用到的模块
import streamlit as st import plotly.express as px import pandas as pd
我们这次是用到streamlit模块来制作可视化大屏,该模块是基于Python的可视化工具,最初开发出来的目的是给机器学习和数据科学团队使用的。同时我们用plotly.express模块来绘制各种图表,因此图表是具备交互性的,pandas模块来读取数据
@st.cache
def get_data():
url_1 = 'https://raw.githubusercontent.com/owid/owid-datasets/master/datasets/Climate%20change%20impacts/Climate%20change%20impacts.csv'
url_2 = "https://github.com/owid/co2-data/raw/master/owid-co2-data.csv"
df_1 = pd.read_csv(url_1)
df_1_1 = df_1.query("Entity == 'World' and Year <=2021")
df_2 = pd.read_csv(url_2)
return df_1_1, df_2
然后我们来制作整个可视化大屏,首先我们先确认好可视化大屏的布局,如下图所示
然后我们针对每一篇布局来编写代码,首先看到的是标题部分,我们通过streamlit模块当中的markdown方法来实现即可
st.markdown()
然后根据上面的布局设计,我们这么来编写代码
col2, space2, col3 = st.columns((10,1,10))
with col2:
year = st.slider('选择年份',1750,2020)
...
with col3:
...
selected_countries = st.multiselect('选择国家',countries,default_countries)
...
col4, space3, col5, space4, col6 = st.columns((10,1,10,1,10))
with col4:
st.markdown("""## 二氧化碳和全球变暖之间的关系""")
with col5:
st.subheader(" 副标题一 ")
...
with col6:
st.subheader(" 副标题二 ")
...
我们这里使用columns方法来将页面均匀的分成若干列,并且给定特定的宽度,当然每列之间还需要留一点空隙,从美观程度上来考虑,因此才有了变量space对应的是宽度1的空隙
col2, space2, col3 = st.columns((10,1,10))
然后我们针对分割开来的每个区域进行图表的绘制,例如左上方的世界地图,我们用plotly.express当中的choropleth方法来绘制,另外我们添加了时间轴,通过调用streamlit模块当中的slider方法来实现
with col2:
year = st.slider('选择时间', 1750, 2020)
fig = px.choropleth(df_co2[df_co2['year'] == year], locations="iso_code",
color="co2_per_capita",
hover_name="country",
range_color=(0, 25),
color_continuous_scale=px.colors.sequential.Reds)
st.plotly_chart(fig, use_container_width=True)
而例如右上方的折线图,同样也是调用plotly.express模块来实现的,其中多选框则是调用了streamlit模块当中的multiselect方法,代码如下
with col3:
default_countries = ['World', 'United States', 'United Kingdom', 'EU-27', 'China', 'Canada']
countries = df_co2['country'].unique()
selected_countries = st.multiselect('选择国家或者区域性组织', countries, default_countries)
df3 = df_co2.query('country in @selected_countries')
fig2 = px.line(df3, "year", "co2_per_capita", color="country")
st.plotly_chart(fig2, use_container_width=True)
最后的成品如下图所示:
从上面绘制的图表中我们能够看到的是,美国以及加拿大这两国家二氧化碳的排放量一直都很高,超过了包括欧盟、英国以及中国在内的主要经济体。当然近些年各个国家的政府也对该问题相当的重视,制订了相对应的节能减排的应对措施。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12