
作者:俊欣
来源:关于数据分析与可视化
“碳达峰、碳中和”是2021年政府在不断强调与非常重视的事儿,那什么是“碳达峰”、什么又是“碳中和”呢?这里小编来为大家科普一下,所谓的“碳达峰”指的是在某一时间点,二氧化碳的排放不再达到峰值,之后逐步回落。
而“碳中和”也就意味着企业、个体与团体在一定时间内直接或间接产生的温室气体排放总量,通过植树造林、节能减排等形式,抵消自身产生的二氧化碳排放,实现二氧化碳的“零排放”。
今天小编就用Python来制作一张可视化大屏,让大家来感受一下近百年来二氧化碳排放的趋势以及给我们所居住的环境造成了什么样的影响。
本地可视化大屏中引用的数据来自于由英国牛津大学知名教授创办的网站“用数据看世界(Our World in Data”,里面收入了各个学科的数据,包括卫生、食品、收入增长和分配、能源、教育、环境等行业进行了分析与可视化展示,十分地全面,并且当中的元数据开放在Github当中
我们导入需要用到的模块
import streamlit as st import plotly.express as px import pandas as pd
我们这次是用到streamlit模块来制作可视化大屏,该模块是基于Python的可视化工具,最初开发出来的目的是给机器学习和数据科学团队使用的。同时我们用plotly.express模块来绘制各种图表,因此图表是具备交互性的,pandas模块来读取数据
@st.cache def get_data(): url_1 = 'https://raw.githubusercontent.com/owid/owid-datasets/master/datasets/Climate%20change%20impacts/Climate%20change%20impacts.csv' url_2 = "https://github.com/owid/co2-data/raw/master/owid-co2-data.csv" df_1 = pd.read_csv(url_1) df_1_1 = df_1.query("Entity == 'World' and Year <=2021") df_2 = pd.read_csv(url_2) return df_1_1, df_2
然后我们来制作整个可视化大屏,首先我们先确认好可视化大屏的布局,如下图所示
然后我们针对每一篇布局来编写代码,首先看到的是标题部分,我们通过streamlit模块当中的markdown方法来实现即可
st.markdown()
然后根据上面的布局设计,我们这么来编写代码
col2, space2, col3 = st.columns((10,1,10)) with col2: year = st.slider('选择年份',1750,2020) ... with col3: ... selected_countries = st.multiselect('选择国家',countries,default_countries) ... col4, space3, col5, space4, col6 = st.columns((10,1,10,1,10)) with col4: st.markdown("""## 二氧化碳和全球变暖之间的关系""") with col5: st.subheader(" 副标题一 ") ... with col6: st.subheader(" 副标题二 ") ...
我们这里使用columns方法来将页面均匀的分成若干列,并且给定特定的宽度,当然每列之间还需要留一点空隙,从美观程度上来考虑,因此才有了变量space对应的是宽度1的空隙
col2, space2, col3 = st.columns((10,1,10))
然后我们针对分割开来的每个区域进行图表的绘制,例如左上方的世界地图,我们用plotly.express当中的choropleth方法来绘制,另外我们添加了时间轴,通过调用streamlit模块当中的slider方法来实现
with col2: year = st.slider('选择时间', 1750, 2020) fig = px.choropleth(df_co2[df_co2['year'] == year], locations="iso_code", color="co2_per_capita", hover_name="country", range_color=(0, 25), color_continuous_scale=px.colors.sequential.Reds) st.plotly_chart(fig, use_container_width=True)
而例如右上方的折线图,同样也是调用plotly.express模块来实现的,其中多选框则是调用了streamlit模块当中的multiselect方法,代码如下
with col3: default_countries = ['World', 'United States', 'United Kingdom', 'EU-27', 'China', 'Canada'] countries = df_co2['country'].unique() selected_countries = st.multiselect('选择国家或者区域性组织', countries, default_countries) df3 = df_co2.query('country in @selected_countries') fig2 = px.line(df3, "year", "co2_per_capita", color="country") st.plotly_chart(fig2, use_container_width=True)
最后的成品如下图所示:
从上面绘制的图表中我们能够看到的是,美国以及加拿大这两国家二氧化碳的排放量一直都很高,超过了包括欧盟、英国以及中国在内的主要经济体。当然近些年各个国家的政府也对该问题相当的重视,制订了相对应的节能减排的应对措施。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13