
作者:俊欣
来源:关于数据分析与可视化
前两篇Pyecharts的文章来帮我们简单的梳理了一下可以用Pyecharts来绘制哪些图表之后,本篇文章我们用pyecharts里面的一些组件,将绘制的图表都组合起来
首先介绍Pyecharts模块当中的Grid组件,使用Grid组件可以很好地将多张图无论是上下组合还是左右组合,都能够很好地拼接起来,我们先来看第一个例子
bar = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="直方图"))
)
line = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(title="折线图", pos_top="48%"),
legend_opts=opts.LegendOpts(pos_top="48%"),
)
)
grid = (
Grid()
.add(bar, grid_opts=opts.GridOpts(pos_bottom="60%"))
.add(line, grid_opts=opts.GridOpts(pos_top="50%"))
.render("水平组合图_test.html")
)
我们可以看到两张图表被以上下组合的方式拼接起来,当然除了上下的拼接以外,我们还可以左右来拼接,代码如下
bar = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts(title="直方图"),legend_opts=opts.LegendOpts(pos_left="20%"),)
)
line = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(title="折线图", pos_right="5%"),
legend_opts=opts.LegendOpts(pos_right="20%"),
)
)
grid = (
Grid()
.add(bar, grid_opts=opts.GridOpts(pos_left="60%"))
.add(line, grid_opts=opts.GridOpts(pos_right="50%"))
.render("垂直组合图_test.html")
)
可以看到我们无论是想上下拼接还是左右拼接,都可以通过调整参数“pos_left”、“pos_right”、“pos_top”以及“pos_bottom”这几个参数来实现,我们再来看一下下面这个例子,我们也可以将地图和直方图两者拼接起来
bar = (
Bar()
.add_xaxis(Faker.choose())
.add_yaxis("商家1", Faker.values())
.add_yaxis("商家2", Faker.values())
.set_global_opts(legend_opts=opts.LegendOpts(pos_left="20%"))
) map = (
Map()
.add("商家1", [list(z) for z in zip(Faker.provinces, Faker.values())], "china")
.set_global_opts(title_opts=opts.TitleOpts(title="地图-基本示例"))
)
grid = (
Grid()
.add(bar, grid_opts=opts.GridOpts(pos_top="50%", pos_right="75%"))
.add(map, grid_opts=opts.GridOpts(pos_left="60%"))
.render("地图+直方图.html")
)
英文单词“overlap”的意思是重叠,那么放在这里,也就指的是可以将多张图合并成一张,那么该怎么结合才好呢?我们来看一下下面这个例子,我们将直方图和折线图通过overlap组件组合到一起
v1 = Faker.values()
v2 = Faker.values()
v3 = Faker.values()
bar = (
Bar()
.add_xaxis(Faker.provinces)
.add_yaxis("商家A", v1)
.add_yaxis("商家B", v2)
.extend_axis(
yaxis=opts.AxisOpts(
axislabel_opts=opts.LabelOpts(formatter="{value} 个"), interval=20
)
)
.set_series_opts(label_opts=opts.LabelOpts(is_show=False))
.set_global_opts(
title_opts=opts.TitleOpts(title="Overlap-bar+line"),
yaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value} 个")),
)
)
line = Line().add_xaxis(Faker.provinces).add_yaxis("商家C", v3, yaxis_index=1)
bar.overlap(line)
bar.render("直方图+折线图Overlap.html")
除此之外,我们也可以将散点图和折线图合并在一张图上面,在代码上就只要将直方图的代码替换成散点图的就行,这边也就具体不做演示
我们也可以将上面提高的两个组件结合起来使用,以此来绘制多条Y轴的直方图图表,代码如下
Bar()
.add_xaxis(x_data)
.add_yaxis( "A",
[具体相关的数据],
yaxis_index=0,
color="#d14a61",
)
.add_yaxis( "B",
[具体相关的数据],
yaxis_index=1,
color="#5793f3",
)
.直方图的全局配置代码....
line = (
Line()
.add_xaxis(x_data)
.add_yaxis( "C",
[具体相关的数据],
yaxis_index=2,
color="#675bba",
label_opts=opts.LabelOpts(is_show=False),
)
)
bar.overlap(line)
grid = Grid()
grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True)
grid.render("test.html")
我们在用Pyecharts绘制了多张图表之后,可以直接Tab组件将多张图表连起来,一页放一张图表,具体看下面的例子和代码,
def bar_datazoom_slider() -> Bar: c = (
Bar()
.add_xaxis(Faker.days_attrs)
.add_yaxis("商家A", Faker.days_values)
.set_global_opts(
title_opts=opts.TitleOpts(title="Bar-DataZoom(slider-水平)"),
datazoom_opts=[opts.DataZoomOpts()],
)
) return c def line_markpoint() -> Line: c = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis( "商家A",
Faker.values(),
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="min")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="折线图"))
) return c def pie_rosetype() -> Pie: v = Faker.choose()
c = (
Pie()
.add( "",
[list(z) for z in zip(v, Faker.values())],
radius=["30%", "75%"],
center=["25%", "50%"],
rosetype="radius",
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(title_opts=opts.TitleOpts(title="饼图-玫瑰图示例"))
) return c
tab = Tab()
tab.add(bar_datazoom_slider(), "直方图")
tab.add(line_markpoint(), "折线图")
tab.add(pie_rosetype(), "饼图")
tab.render("tab_base.html")
分别将所绘制的三张图表放置在三个页面当中,通过pyecharts库当中的tab串联起来
和上面Tab组件不一样的是,Tab组件是一页放一张图表,有几张图表就分成几页,而Page组件则是将绘制完成的多张图表统统放在一张页面里面,代码的改动上面也十分的简单,只要将上面代码的Tab部分改成Page()即可,如下
def bar_datazoom_slider() -> Bar: c = (
Bar()
.add_xaxis(Faker.days_attrs)
.add_yaxis("商家A", Faker.days_values)
.set_global_opts(
title_opts=opts.TitleOpts(title="Bar-DataZoom(slider-水平)"),
datazoom_opts=[opts.DataZoomOpts()],
)
) return c def line_markpoint() -> Line: c = (
Line()
.add_xaxis(Faker.choose())
.add_yaxis( "商家A",
Faker.values(),
markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="min")]),
)
.set_global_opts(title_opts=opts.TitleOpts(title="折线图"))
) return c def pie_rosetype() -> Pie: v = Faker.choose()
c = (
Pie()
.add( "",
[list(z) for z in zip(v, Faker.values())],
radius=["30%", "75%"],
center=["25%", "50%"],
rosetype="radius",
label_opts=opts.LabelOpts(is_show=False),
)
.set_global_opts(title_opts=opts.TitleOpts(title="饼图-玫瑰图示例"))
) return c
page = Page(layout=Page.SimplePageLayout)
page.add(
bar_datazoom_slider(),
line_markpoint(),
pie_rosetype(),
)
page.render("page_simple_layout.html")
上图所示的图表在页面当中是不能被挪动的,在Page()组件当中我们还能够使得图表按照我们所想的那样随意的挪动
## 上面的代码都一样, page = Page(layout=Page.DraggablePageLayout)
page.add(
bar_datazoom_slider(),
line_markpoint(),
pie_rosetype(),
)
page.render("page_draggable_layout.html")
本篇文章所用到的绘制的图表都比较的简单,为了可以让读者更加容易轻松的上手来实践,本质上就是通过上面提到的几大组件将绘制好的图表给串联起来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28