今天CDA给大家分享的内容:Pandas遇上Excel会擦出什么样的火花?
作者: 俊欣
来源:关于数据分析与可视化
大家好,又是新的一周。
Excel是我们职场打工人接触最多的办公室软件之一,当中会涉及到很多重复的操作,好在Python为我们提供了很多操作Excel的模块,能够帮助我们极大地提高工作效率,从琐碎的工作时间中抽出身来。
今天我们要介绍的模块是xlsxwriter,它的主要功能是在Excel表格当中插入数据、插入图表,以及进行一系列数据的处理,
直接在命令行中输入
pip install xlsxwriter
或者使用豆瓣镜像
pip install -i https://pypi.douban.com/simple xlsxwriter
安装成功之后,来看一下如何使用
当我们用pandas模块对Excel表格进行处理的时候,需要引用xlsxwriter模块作为内在的引擎。我们来实现一下如何将多个DataFrame数据保存在一张Excel表格当中,并且分成不同的sheet
import pandas as pd # 创建几个DataFrame数据集 df1 = pd.DataFrame({'Data': [11, 13, 15, 17]})
df2 = pd.DataFrame({'Data': [21, 23, 25, 27]})
df3 = pd.DataFrame({'Data': [31, 33, 35, 37]}) # 引入xlsxwriter作为引擎,制作ExcelWriter写入器 writer = pd.ExcelWriter('pandas_multiple.xlsx', engine='xlsxwriter') # 将不同的DataFrame数据集写入不同的sheetd当中 df1.to_excel(writer, sheet_name='Sheet1')
df2.to_excel(writer, sheet_name='Sheet2')
df3.to_excel(writer, sheet_name='Sheet3') # 输出生成的Excel文件 writer.save()
我们就可以在同级目录中看到生成的一个Excel文件,在不同的Sheet当中分别存放着指定的数据集
将多个DataFrame数据集放在同一张Sheet当中,通过当中的参数startcol与startrow,顾名思义就是从哪一行、哪一列开始
df1 = pd.DataFrame({'Data': [11, 13, 15, 17]})
df2 = pd.DataFrame({'Data': [21, 23, 25, 27]})
df3 = pd.DataFrame({'Data': [31, 33, 35, 37]})
df4 = pd.DataFrame({'Data': [41, 43, 45, 47]})
writer = pd.ExcelWriter('pandas_positioning.xlsx', engine='xlsxwriter') # 存放在指定的位置当中 df1.to_excel(writer, sheet_name='Sheet1') # 默认位置是从A1开始的 df2.to_excel(writer, sheet_name='Sheet1', startcol=4)
df3.to_excel(writer, sheet_name='Sheet1', startrow=8) # 当然我们不需要header和index df4.to_excel(writer, sheet_name='Sheet1',
startrow=10, startcol=15, header=False, index=False)
writer.save()
如下图所示
下面我们来看一下,如何利用Pandas来根据表格中的数据绘制柱状图,并且保存在Excel表格当中,在xlsxwriter模块当中有add_chart()方法,提供了9中图表的绘制方法,我们先来看一下柱状图的绘制
df = pd.DataFrame({'Data': [10, 20, 30, 20, 15, 30, 45]})
writer = pd.ExcelWriter('pandas_chart.xlsx', engine='xlsxwriter')
df.to_excel(writer, sheet_name='Sheet1')
workbook = writer.book
worksheet = writer.sheets['Sheet1'] # 绘制柱状图图表 chart = workbook.add_chart({'type': 'column'}) # 根据哪些数据来绘制图表 chart.add_series({'values': '=Sheet1!$B$2:$B$8'}) # 将绘制完成的图表插入到sheet当中 worksheet.insert_chart('D2', chart)
writer.save()
如下图所示
我们只需要针对上面的代码,将type当中的column改成line即可绘制折线图
df = pd.DataFrame({'Data': [10, 20, 30, 20, 15, 30, 45]})
writer = pd.ExcelWriter('pandas_line.xlsx', engine='xlsxwriter')
df.to_excel(writer, sheet_name='Sheet1')
workbook = writer.book
worksheet = writer.sheets['Sheet1'] # 绘制折线图图表 chart = workbook.add_chart({'type': 'line'}) # 根据哪些数据来绘制图表 chart.add_series({'values': '=Sheet1!$B$2:$B$8'}) # 将绘制完成的图表插入到sheet当中 worksheet.insert_chart('D2', chart)
writer.save()
如下图所示
除了折线图与直方图之外,小编也在上面提到,xlsxwriter模块提供了绘制9中图表的方法,分别是
我们仅仅只需要在add_chart()方法当中,填入对应的图表的类型即可
当然图表绘制出来之后,我们还需要添加例如标题、标记等辅助内容,毕竟我们希望绘制出来的图表能够被更多的人给理解,
添加标题是去调用set_title()方法
chart.set_title({'name': '.....'})
添加x轴与y轴上面的标注,需要用到的方法是
chart.set_x_axis({'name': '...'})
chart.set_y_axis({'name': '...'})
我们尝试来绘制一个直方图,并且添加上这些辅助信息
import xlsxwriter
workbook = xlsxwriter.Workbook('chart.xlsx')
worksheet = workbook.add_worksheet() # Create a new Chart object. chart = workbook.add_chart({'type': 'column'}) # 创建数据 data = [
[1, 3, 5, 7, 9],
[2, 4, 6, 8, 10],
[3, 6, 9, 12, 15],
]
worksheet.write_column('A1', data[0])
worksheet.write_column('B1', data[1])
worksheet.write_column('C1', data[2]) # 基于指定的数据集来绘制图表 chart.add_series({'values': '=Sheet1!$A$1:$A$5'})
chart.add_series({'values': '=Sheet1!$B$1:$B$5'})
chart.add_series({'values': '=Sheet1!$C$1:$C$5'}) # 标题与标注 chart.set_title({"name": "直方图"})
chart.set_x_axis({'name': '这个是X轴'})
chart.set_y_axis({'name': '这个是Y轴'}) # 将绘制出来的图表插入到sheet当中 worksheet.insert_chart('A7', chart)
workbook.close()
如下图所示
同时我们还可以将两种图表结合起来,例如是将折线图与直方图这两种图表结合起来绘制,通过内置的combine()方法
chart = workbook.add_chart({'type': 'column'})
chart.add_series({'values': '=Sheet1!$B$2:$B$8'})
line_chart = workbook.add_chart({"type": "line"})
line_chart.add_series({'values': '=Sheet1!$B$2:$B$8'})
chart.combine(line_chart)
如下图所示
我们可以对数据,尤其是一些小数,指定保留例如两位小数,或者是指定位数的小数,代码如下
df = pd.DataFrame({'Numbers': [1010, 2020, 3030, 2020, 1515, 3030, 4545], 'Percentage': [.1, .2, .33, .25, .5, .75, .45 ], }) writer = pd.ExcelWriter("pandas_column_formats.xlsx", engine='xlsxwriter') df.to_excel(writer, sheet_name='Sheet1') workbook = writer.book worksheet = writer.sheets['Sheet1'] # 指定保留小数的位数 format1 = workbook.add_format({'num_format': '#,##0.00'}) format2 = workbook.add_format({'num_format': '0%'}) # 设置列的宽度以及保留小数的位数 worksheet.set_column('B:B', 18, format1) # 不设置列的宽度,但是设置保留小数的位数 worksheet.set_column('C:C', None, format2) writer.save()
如下图所示
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02最近我发现一个绝招,用DeepSeek AI处理Excel数据简直太爽了!处理速度嘎嘎快! 平常一整天的表格处理工作,现在只要三步就能搞 ...
2025-04-01你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26