京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1.数据分析和数据挖掘的概念
数据分析(Data Analysis) 是以数据为分析对象,以探索数据内的有用信息为主要途径,以解决业务需求为最终目标,包含业务理解、数据采集、 数据清洗、数据探索、数据可视化、数据建模、模型结果可视化、分析结果的业务应用等步骤在内的一整套分析流程。
数据挖掘(Data Mining) : 是一个跨学科的计算机科学分支,它是用人工智能、机器学习、统计学和数据库的交叉方法在相对较大型的数据集中发 现模式的计算过程。
2.数据分析的八个层次
数据分析的目的:发现有价值的信息、提出结论、为业务发展提供辅助决策。它描述了 ”过去发生了什么“、”现在 正在发生什么“ 和 “未来可能发生什么”。根据分析层次的级别不同,分为常规报表、即席查询、多维分析(又称钻 取或OLAP)、警报、统计分析、预报(或者时间序列预测)、预测型建模(Predictive Model)和优化。
3.大数据对传统小数据的拓展及其区别与联系
数据上:小数据重抽样,大数据重全体。由于传统小数据分析的本质是基于样本推断总体,因此在分析过程中十分 注重抽样的科学性。只有抽样是科学的,其推断结果才具有科学意义。而大数据虽然不一定是总体,但由于在建模 方法上已经更偏向于机器学习,因此抽样已经不是必要的手段和方法论了。
方法上:小数据重实证,大数据重优化。传统的小数据在方法上更重视实证研究,强调在相关理论的前提下建立假设,收集数据,建立模型并验证假设。而大数据往往更重视方法论中的自我迭代和自我优化过程,可能运算的第一 个结果与标准答案相差甚远,但是可以通过与正确答案的不断校准(往往建立损失函数),使得模型的精度不断提高。
目标上:小数据重解释,大数据重预测。小数据的分析往往注重归因分析,探索变量之间的内部影响机理,例如究竟什么样的生活习惯会提高癌症的发病率。但是大数据往往关心的是对于未知对象的预测,例如判别某个人是否患有癌症,或者患有癌症的概率是多少。
4.数据分析目标的意义、过程及其本质
可以认为数据分析涉及到公司运营的方方面面,这包括对企业部门经营情况的评估、内部员工的管理、生产流程的监管、 产品结构优化与新产品开发、财务成本优化、市场结构的分析和客户关系的管理。其中,关于客户与市场的数据分析是 “重头戏”。下面以客户全生命周期管理为例介绍数据分析运用场景和挖掘主题,如下图所示。
1.CRISP-DM 方法论
CRISP-DM方法论将数据挖掘项目生命周期分为6个阶段,它们分别是业务理解、数据理解、数据准备、建模、模型评 估和模型发布,如下图所示。
下图呈现了通用数据挖掘方法论(CRISP-DM)流程的6个阶段。下面简短地介绍了每个阶段的要点。
业务理解(Business Understanding) 该初始阶段集中在从商业角度理解项目的目标和要求,通过理论分析转化为数据挖掘可操作的问题,制定实现目标的初 步计划。
数据理解(Data Understanding) 数据理解阶段开始于原始数据的收集,然后是熟悉数据、标明数据质量问题、探索对数据的初步理解、发觉有趣的子集 以形成对探索关系的假设。
数据准备(Data Preparation) 数据准备阶段包括所有从原始的、未加工的数据构造数据挖掘所需信息的活动。数据准备任务可能被实施多次,而且没 有任何规定的顺序。这些任务的主要目的是从源系统根据维度分析的要求,获取所需要的信息,需要对数据进行转换和 清洗。
建模(Modeling) 在此阶段,主要是选择和应用各种建模技术,同时对它们的参数进行校准,以达到最优值。通常对同一个数据挖掘问题 类型,会有多种建模技术。一些技术对数据格式有特殊的要求,因此,常常需要返回到数据准备阶段。
模型评估(Evaluation) 在模型最后发布前,根据商业目标评估模型和检查建立模型的各个步骤。此阶段关键目的是,判断是否存在一些重要的 商业问题仍未得到充分考虑。
模型发布(Deployment) 模型完成后,由模型使用者(客户)根据当时背景和目标完成情况,决定如何在现场使用模型。比如,在网页的实时个 人化中或营销数据的重复评分中。
2.SEMMA 方法论
SAS公司的数据挖掘项目实施方法论,对CRISP-DM方法中的数据准备和建模环节进行了拓展,被称为SEMMA方法, 如下图所示。
3.5个步骤中的主要任务,如下图所示。
数据整理
涉及数据采集、数据合并与抽样的操作,目的是为了构造分析用到的数据。分析人员根据维度分析获得的结果作为整理 数据的依据,将散落在公司内部与外部的数据进行整合。
样本探索
这个步骤的主要任务是对数据质量的探索。变量质量方面涉及错误值(如:年龄=-30)、恰当性(客户的某些业务指标 为缺失值,实际上是没有这个业务,值应该为“0”)、缺失值(没有客户的收入信息)、一致性(收入单位为人民币, 而支出单位为美元)、平稳性(某些数据的均值变化过于剧烈)、重复值(相同的交易被记录两次)和及时性(银行客 户的财务数据更新的滞后时长)等方面。这部分的探索主要解决变量是错误时是否可以修改、是否可以使用的问题。
变量修改
根据变量探索的结论,需要对数据质量问题和变量分布情况分别作变量修改。数据质量问题的修改涉及改正错误编码、 缺失值填补、单位统一等操作。变量分布情况的修改涉及函数转换和标准化方法,具体的修改方法需要与后续的统计建 模方法相结合。
建模 根据分析的目的选取合适的模型,这部分内容在“数据分析方法分类介绍”已经作了详细的阐述,这里不再赘述。
模型检验 这里指模型的样本内验证,即使用历史数据对模型表现的优劣进行评估。比如,对有监督学习会使用ROC曲线和提升度 等技术指标评估模型的预测能力。
数据分析中不同人员的角色与职责
业务问题是需求,最终需要转换成统计或数据挖掘等问题,用数据分析的思路来解决,因此数据分析师在业务与数据间 起到协调作用,是业务问题能否成功转换成统计问题的关键。通常来说,业务问题需要一个或多个字段来表达,这些字 段以什么形式出现(如测量级别),因为字段的形式会决定选择的方法,而每种方法又用于解决特定的需求,此外由于 模型对业务人员或企业高管来说可能过于专业,因此需要将模型输出通俗的表达出来。所以协调者、数据分析师、报告 人的角色,决定了数据分析师是一名(精通数理和软件的)综合型人才。
1.公司营销部门每月例会报告的经营指标汇总,属于下列哪一类数据分析?
A. 客户行为的数据挖掘报告
B. 描述性数据分析报告
C. 产品和行为倾向报告
D. 以上都不对
答案:B 解析:按照惯例经营指标汇总,通常是报告业绩指标的数量、金额、百分比或排名等信息,这类 分析多数归属于描述性数据分析,而且是单变量分析的内容。AC项涉及行为特点和商品特征的关 系,属于多变量分析的内容。
2.以下哪些内容包含在数据分析层次级别中?
A. 即席查询
B. 多维分析(又称为钻取或者OLAP)
C. 统计分析与警报
D. 与业务人员协商知识点
答案:ABC 解析:考察数据分析的八个层次,需要在理解的基础上加以记忆。
3.统计模型主要用于解决哪几类问题?
A. 预测分类问题
B. OLAP分析问题
C. 相关分析
D. 市场细分问题
答案:ACD 解析:A项、C项和D项是统计模型的典型问题,但OLAP分析问题并不是统计模型。
4.下列关于数据挖掘流程表达正确的一项是:
A. 方法论CRISP-DM与SEMMA是业内公认的权威流程,严格按照步骤做数据分析总不会出错的
B. CRISP-DM(译为“跨行业”数据挖掘)在任何数据分析行业中均适用
C. SEMMA方法论是对CRISP-DM方法中的数据准备和建模环节进行了拓展
D. 由于数据比较整洁,所以可以不需要再做数据预处理,直接从建模开始
答案:C 解析:AB两项都犯同一类错误,就是过于迷信方法论的共识性,D项中数据分析的一般性 描述是很重要的预分析过程,不仅如此,模型对于数据的要求也很高,样本探索、变量整理等预处理工作都不可省去。
5.关于客户生命周期管理,下列哪一项不属于对既有高价值客户的分析内容?
A. 行为信用评分
B. 初始信用评分
C. 产品精准营销
D. 客户留存管理
答案:B 解析:高价值客户属于企业的既有客户,而初始信用评分属于对潜在响应客户的 策略分析。
6.统计模型主要用于解决哪几类问题?
A.预测分类问题
B.OLAP分析问题
C.相关分析
D.市场细分问题
答案:ACD 解析:A项、C项和D项是统计模型的典型问题,但OLAP分析问题并不属于统计模型。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27