
用于衡量两类现象在发展变化的方向与大小方面存在一定的关联(不包括因果和共变关系)。
1.正线性相关
例如销售额中涵盖了销售利润和各类成本等,从数据大致可以看出,销售利润随着销售额的增长而增长,由于各类不确 定因素,数据点基本落在直线周围,我们称之为正线性相关。
2.负线性相关
例如通常情况下,某地区的犯罪率越高,则该地区的房价越低,但由于供需环境等其他不确定因素,数据点基本落在直 线周围,我们称之为负线性相关。
3.完全线性相关
虽然所有点都在直线上,但是我们不能说两个变量是函数关系,这是因为我们看到的是样本,并且我们假设两个变量是 随机变量,而我们需要推导的是两个总体的关系。
4.非线性相关
例如虽然网站的点击量随着网站的广告投入的增加而增加,但其数据点分布在对数线周围,呈现出对数相关性。
估计标准误差与相关系数的关系
一元线性回归中,对于同一个问题,估计标准误差就意味着样本点到回归线的距离越近,那么两个变量的 线性相关性就越强,相关系数越大。
1.相关系数
一般情况下,如果不做特殊说明,指的就是线性相关。 如果相关系数是根据变量的样本数据计算的,即为了推断总体,那么则称为样本相关系数(虽然有的时候在部分资料里 并不严格说明),记为 r(有的教材里也称为Pearson相关系数)
虽然没有严格的规定,但是我们往往习惯按照下面的方式对相关性强度进行分级:
由于 r 只是样本线性相关系数,无论其数值等于多少,我们需要推断的始终是总体的相关性如何,这时候我们就需要运 用显著性检验的知识了。我们运用R.A.Fisher提出的 t 检验方法来检验两个变量总体之间是否存在线性相关关系。
原假设:H0 : ߩ = 0,两变量间无直线相关关系 检验统计量:
适用条件:数据间相互独立,包括观测间相互独立与变量间相互独立;变量为连续变量(积差相关的条件);两变量间 的关系是线性的。
(1)散点的密集程度,反应相关性的大小;
(2)散点是否具有线性关系,或线性趋势,还是其 他形式,如果是其他形式是否可以转换成线性 形式;
(3)线性关系之外是否存在异常值及其存在与线性 趋势的哪个方向;
(4)数据是否存在稀疏问题。
回归分析能解决什么问题?
探索影响因变量的可能因素;
利用回归模型进行预测。
相关与回归间的关系?
相关分析侧重反映散点的疏密程度。
回归分析侧重反映散点的趋势程度。
1.线性回归的基本过程
第一步:总平方和分解
第二步:计算判定系数
第三步:残差标准误
由于 SSE 是一个求和表达式。样本越多,SSE 的取值就往往会越大,因此,SSE 并不适合相对 客观的反映估计值与样本值的偏离程度,我们需要将 SSE 处理成相对值。于是我们令
,其中 n-2 是自由度。这个公式可以粗略的理解为,通过除以自由度,得到残差平 方的均值;再开根号则可以将方差转化成标准差,也成为估计标准误差。
第四步:线性关系检验
线性回归模型的假设
1.回归分析前,哪种数据处理是不合理的( )。 A. 标准化处理
B. 取对数处理
C. 排秩处理
D. 取整处理
答案:CD 解析:标准化可以消除数据规模的影响,对数处理往往可以解决数据正态假设的问题。
2.线性回归分析主要用于哪种情境( )。
A. 客户价值评估
B. 贷款违约识别
C. 不同班级在英语得分上是否存在差异
D. 根据用户特征进行市场细分
答案:A 解析:B项说的是逻辑回归的内容,C项是方差分析的内容,D项是说聚类分析等 方法。
3.线性回归假设正确的是( )。
A. 线性:因变量与自变量间的线性关系
B. 正态性:残差必须服从正态分布
C. 独立同分布:残差间相互独立,且遵循同一分布
D. 正交假定:误差项与自变量不相关,其期望为0 答案:ABCD 解析:考察线性回归的基本假设。
4.以下关于线性回归阐述正确的是( )。
A. 如果我们建立了y关于x的线性回归方程,那么我们就可以将y变化的原因归结于x的变化。
B. 如果我们建立了y关于x的线性回归方程,在没有其他信息的情况下,我们只能说这两个变量存在线性关系。
C. 如果变量x与y无法建立线性回归方程,那就说明x和y没有关系
D. 如果想研究市场规模与市场环境因素的关系,那么我们就可以以30年的市场规模数据作为因变量y(年化数据), 对应的市场环境数据作为自变量x,建立线性回归方程(共30个样本)。
答案:B 解析:A项是把关系当做因果了,C项有可能有别的非线性关系,D项更适合做面板模型, 线性回归适合做截面数据。
5.回归平方和SSR反映了y的总变差中( )。
A. 由于 x 和 y 之间的线性关系引起的 y 的变化部分
B. 除了 x 和 y 之间的线性影响之外的其他因素对 y 变差的影响
C. 由于 x 和 y 之间的非线性关系引起的 y 的变化部分
D. 由于 x 和 y 之间的函数关系引起的 y 的变化部分
答案:A 解析:熟悉SSR、SSE的相关概念。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10