
用于衡量两类现象在发展变化的方向与大小方面存在一定的关联(不包括因果和共变关系)。
1.正线性相关
例如销售额中涵盖了销售利润和各类成本等,从数据大致可以看出,销售利润随着销售额的增长而增长,由于各类不确 定因素,数据点基本落在直线周围,我们称之为正线性相关。
2.负线性相关
例如通常情况下,某地区的犯罪率越高,则该地区的房价越低,但由于供需环境等其他不确定因素,数据点基本落在直 线周围,我们称之为负线性相关。
3.完全线性相关
虽然所有点都在直线上,但是我们不能说两个变量是函数关系,这是因为我们看到的是样本,并且我们假设两个变量是 随机变量,而我们需要推导的是两个总体的关系。
4.非线性相关
例如虽然网站的点击量随着网站的广告投入的增加而增加,但其数据点分布在对数线周围,呈现出对数相关性。
估计标准误差与相关系数的关系
一元线性回归中,对于同一个问题,估计标准误差就意味着样本点到回归线的距离越近,那么两个变量的 线性相关性就越强,相关系数越大。
1.相关系数
一般情况下,如果不做特殊说明,指的就是线性相关。 如果相关系数是根据变量的样本数据计算的,即为了推断总体,那么则称为样本相关系数(虽然有的时候在部分资料里 并不严格说明),记为 r(有的教材里也称为Pearson相关系数)
虽然没有严格的规定,但是我们往往习惯按照下面的方式对相关性强度进行分级:
由于 r 只是样本线性相关系数,无论其数值等于多少,我们需要推断的始终是总体的相关性如何,这时候我们就需要运 用显著性检验的知识了。我们运用R.A.Fisher提出的 t 检验方法来检验两个变量总体之间是否存在线性相关关系。
原假设:H0 : ߩ = 0,两变量间无直线相关关系 检验统计量:
适用条件:数据间相互独立,包括观测间相互独立与变量间相互独立;变量为连续变量(积差相关的条件);两变量间 的关系是线性的。
(1)散点的密集程度,反应相关性的大小;
(2)散点是否具有线性关系,或线性趋势,还是其 他形式,如果是其他形式是否可以转换成线性 形式;
(3)线性关系之外是否存在异常值及其存在与线性 趋势的哪个方向;
(4)数据是否存在稀疏问题。
回归分析能解决什么问题?
探索影响因变量的可能因素;
利用回归模型进行预测。
相关与回归间的关系?
相关分析侧重反映散点的疏密程度。
回归分析侧重反映散点的趋势程度。
1.线性回归的基本过程
第一步:总平方和分解
第二步:计算判定系数
第三步:残差标准误
由于 SSE 是一个求和表达式。样本越多,SSE 的取值就往往会越大,因此,SSE 并不适合相对 客观的反映估计值与样本值的偏离程度,我们需要将 SSE 处理成相对值。于是我们令
,其中 n-2 是自由度。这个公式可以粗略的理解为,通过除以自由度,得到残差平 方的均值;再开根号则可以将方差转化成标准差,也成为估计标准误差。
第四步:线性关系检验
线性回归模型的假设
1.回归分析前,哪种数据处理是不合理的( )。 A. 标准化处理
B. 取对数处理
C. 排秩处理
D. 取整处理
答案:CD 解析:标准化可以消除数据规模的影响,对数处理往往可以解决数据正态假设的问题。
2.线性回归分析主要用于哪种情境( )。
A. 客户价值评估
B. 贷款违约识别
C. 不同班级在英语得分上是否存在差异
D. 根据用户特征进行市场细分
答案:A 解析:B项说的是逻辑回归的内容,C项是方差分析的内容,D项是说聚类分析等 方法。
3.线性回归假设正确的是( )。
A. 线性:因变量与自变量间的线性关系
B. 正态性:残差必须服从正态分布
C. 独立同分布:残差间相互独立,且遵循同一分布
D. 正交假定:误差项与自变量不相关,其期望为0 答案:ABCD 解析:考察线性回归的基本假设。
4.以下关于线性回归阐述正确的是( )。
A. 如果我们建立了y关于x的线性回归方程,那么我们就可以将y变化的原因归结于x的变化。
B. 如果我们建立了y关于x的线性回归方程,在没有其他信息的情况下,我们只能说这两个变量存在线性关系。
C. 如果变量x与y无法建立线性回归方程,那就说明x和y没有关系
D. 如果想研究市场规模与市场环境因素的关系,那么我们就可以以30年的市场规模数据作为因变量y(年化数据), 对应的市场环境数据作为自变量x,建立线性回归方程(共30个样本)。
答案:B 解析:A项是把关系当做因果了,C项有可能有别的非线性关系,D项更适合做面板模型, 线性回归适合做截面数据。
5.回归平方和SSR反映了y的总变差中( )。
A. 由于 x 和 y 之间的线性关系引起的 y 的变化部分
B. 除了 x 和 y 之间的线性影响之外的其他因素对 y 变差的影响
C. 由于 x 和 y 之间的非线性关系引起的 y 的变化部分
D. 由于 x 和 y 之间的函数关系引起的 y 的变化部分
答案:A 解析:熟悉SSR、SSE的相关概念。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11