京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1.什么是因子分析?
主成分分析时一般情况下不能对主成分所代表含义进行业务上的解读,因为主成分方向上一般不会恰好某些变量权重大, 而另外一些变量权重都小,这也表现在主成分权重的形成的散点图会偏离坐标轴。如果可以将主成分的坐标轴进行旋转, 使一些变量的权重的绝对值在一个主成分上达到最大,而在其他主成分上绝对值最小,这样就达到了变量分类的目的。对 应地,这种维度分析方法被称为因子分析。 因子分析是一类常用的连续变量降维并进行维度分析的方法,其经常采用主成分法作为其因子载荷矩阵的估计方法,在特 征向量方向上,使用特征值的平方根进行加权,最后通过因子旋转,使得变量的权重在不同因子上更加两极分化。常用最 大方差法进行因子旋转,这种方法是一种正交旋转。
1.正交因子模型
2.因子载荷矩阵
因子载荷矩阵的估计是因子分析的主要问题之一。模型中 L 称为因子载荷矩阵,因子分析是从对 L 的估计入手的,可 以从两方面来理解L 的含义:
(1)将其看做是对因子进行线性组合时的系数。假设相亲对象评分的因子载荷矩阵如下:
可以得到,父母评价X1=0.4*魅力F1+0.5*财务F2+0.2*责任心F3,同事评价与此类似,是通过对三个因子进行线性组 合获得的,组合的系数就是因子载荷矩阵L。
(2)因子载荷矩阵L还可以看作是是p维空间的一组单位正交向量,把这组向量当做坐标轴,隐含的因子F投影到这些 向量上的值即 LF,LF与 X-μ 之间仅相差一个干扰项。因此如果 X 是标准化过的 (μ=0),再排除干扰项,可以认为在L这个参考系中表示的F与在标准坐标系(单位阵)中的表示的X是等价的。
1.因子分析的计算过程大致可分为三步
(1)估计因子载荷矩阵
(2)进行因子旋转
(3)估计公共因子(因子得分)
2.因子载荷矩阵的估计
在正交因子模型中,假定公共因子彼此不相关且具有单位方差,这种情况下,因子载荷矩阵及特殊因子的方差需要满足下式。
有了因子载荷矩阵,可以根据其元素值的大小来判断变量在公共因子中的负荷量大小,并以此对公共因子代表的可能含 义进行解释。假如对本章引例的评价数据进行因子分析,得到因子载荷矩阵如下,那怎么使用载荷矩阵的值来对公共因 子的业务含义做出解释呢?
注:因子载荷矩阵L,代表了变量X在公共因子F上的“载荷”。
因子分析的目的不仅是要找出公共因子,更重要的是要能解释每个公共因子的业务意义。通过上面的分析我们可以看到, 如果载荷矩阵的每列中,各元素的绝对值越向0或1“两极分化”,那么因子负载的代表变量就会比较突出,便于我们进 行解释。相反,如果各元素间差别不大的话,则不易进行解释,例如上例第2列中有不少载荷在0.5附近的中等载荷,进 行解释时容易导致公共因子的意义含糊不清。因此,为了使载荷矩阵每列元素更加向两极转化,需要对因子载荷矩阵施 行旋转变换。
根据正交矩阵的性质,正交旋转后的因子轴能保持原有的夹角不变,如下所示:
对主成分法估计的初始因子载荷进行最大方差旋转,结果如下:
根据载荷矩阵,以父母评价X1为例,可以得到其由因子进行综合的模型为: 父母评价X1 = 0.897*F1– 0.0395*F2 – 0.163*F3
我们获得了因子载荷矩阵L后,可以对因子F代表的含义进行解释,但因子F仍然是未知的,因此需要使用样本对其进行估 计,这个估计值就是所谓因子得分。
如果我们使用主成分法估计因子载荷矩阵,那么计算因子得分时,通常使用最小二乘法,即最小化
德尔菲打分法(Delphi method)是一种通过多位专家的独立的反复主观判断,获得相对客观的信息、意见和见解的打 分方法。相比较于因子分析,德尔菲打分法较为主观。
1.下列关于因子分析说法正确的是?
A. 主成分法是常用的因子载荷矩阵的估计方法
B. 最大方差旋转是应用最广泛的因子旋转方法,这是一种斜交旋转
C. 在选择合适的因子数量时,可以适当放宽对于特征根大小的选择要求,大于0.7时就可以考虑保留
D. 因子分析作为维度分析的手段,是构造合理的聚类模型和稳健的分类模型的必然步骤
答案:ACD 解析:主成分法的得分系数矩阵中,每个分量与相应特征值的平方根进行乘积,组成的新矩阵可以作为因子载荷矩阵的估计, 这种方法称为主成分法,因此A正确;因子旋转时采用最大方差旋转是一种正交旋转,也是最常用的因子旋转方法,因此B错 误;C结论为经验结论,因子分析中一般可以放宽对特征根大小的选择要求,因此正确;聚类模型往往要保证每个聚类变量权 重的平衡,因此事先经常采用因子分析对变量进行降维,分类模型中解释变量的共线性会导致模型不稳定,因此也经常事先 对解释变量进行因子分析。因此D正确。
2.关于主成分与因子分析阐述正确的是?
A. 因子分析中是把因子表示成各个变量的线性组合
B. 主成分分析中是把主成分表示成各个变量的线性组合
C. 因子分析需要构造因子模型:用潜在的假想变量和随机影响变量的线性组合表示原始变量
D. 因子分析和主成分分析只有在线性表示上是一致的
答案:BC 解析:熟知两种方法的定义。
3.下列关于主成分分析与因子分析的异同点描述正确的是?
A. 两种分析方法都是一种降维、简化数据的技术
B. 主成分分析是从显在变量去提炼潜在主成分的过程
C. 主成分分析需要构造分析模型而因子分析不需要构造因子模型
D. 因子分析从本质上是将原指标进行了综合和归纳
答案:A 解析:主成分分析的本质上一种线性变换,是将原指标综合、归纳。而因子分析是从显在变量去提炼潜在因子的过程,是将原指标进 行分解、演绎。所以BD错误。C项中正确的描述是主成分分析不需要构造分析模型而因子分析要构造因子模型。
最后,这里再分享一个考试备考过程中人人皆需的模拟题库——CDA考试模拟题库。
题库是紧密结合CDA考试大纲而编写的一套模拟试题库。为顺利通过考试奠定坚实的基础
1、解析详尽:每道题目基本上都配备了详细的解析和答案,帮助你深入理解题目背后的知识点和解题思路。
2、便捷高效:你可以随时随地通过手机或电脑访问题库,进行自主学习和练习,充分利用碎片时间,提高备考效率。
3、模拟考试:题库提供了多套模拟考试试卷,帮助你熟悉考试流程和题型。
点击CDA题库链接,获取免费版CDA题库入口,祝考试顺利,快速拿证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12