京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1.主成分分析的具体方法
主成分分析是一类常用的针对连续变量的降维方法,选取能够最大化解释数据变异的成分,将数据从高维降到低维,同时 保证各个维度之间正交。 对变量的协方差矩阵或相关系数矩阵求取特征值和特征向量,经证明,对应最大特征值的特征向量,其方向正是协方差矩 阵变异最大的方向。依次类推,第二大特征值对应的特征向量,是与第一个特征向量正交且能最大程度解释数据剩余变异 的方向,而每个特征值则能够衡量各方向上变异的程度。因此,进行主成分分析时,选取最大的几个特征值对应的特征向 量,并将数据映射在这几个特征向量组成的参考系中,达到降维的目的(选择的特征向量数量低于原始数据的维数)。
1.主成分分析算法解析
主成分分析算法认为,数据的信息是包含在其方差当中的,如果一个随机变量的方差很小,说明其不确定性较低,或者说即便我们没有获 得这个变量的抽样值,也几乎可以用一个确定的值(例如其期望值)来代替它,因此引入它只能消除很少的不确定性,即该变量包含的信 息较少。相反,一个方差很大的变量,如果能够获得它的抽样值,则可以帮助我们消除很大一部分不确定性,因此它包含的信息较多。 从主成分分析的观点出发,我们就知道下图中投影到哪个轴更加合适了,显然将原始坐标轴旋转到左图当中的U1位置更好,因为数据在 这个方向上的变异(方差)更大,而样本在右图的U1方向显然变异更小(图中阴影用于示意离散程度,并不代表方差大小)。
我们的目标是优化上式,求满足该函数最大化的 u,可以使用拉格朗日乘数法,即求满足下式最大的 u:
我们的目标是优化上式,求满足该函数最大化的 u,可以使用拉格朗日乘数法,即求满足下式最大的 u:
在实际研究中,有时单个指标的方差对研究目的起关键作用,为了达到研究目的,此时用协方差矩阵进行主成分分析恰 到好处。相关系数矩阵就是随机变量标准化后的协方差矩阵。通过随机变量的标准化,相关系数矩阵剥离了单个指标的 方差,仅保留指标间的相关性,用相关系数矩阵计算主成分,其优势效应仅体现在相关性大、相关指标数多的一类指标上。
2.主成分法的应用
大致分为三个方面:
(1)对数据做综合打分
(2)降维以便对数据进行描述
(3)为聚类或回归等分析提供变量压缩 在应用时要能够判断主成分法的适用性,能够根据需求选取合适的主成分数量。
1.主成分分析计算在选择相关系数计算法时,确定主成分个数的大致原则包括( )?
A.特征根值大于1
B. 特征根值大于0.5
答案:AC 解析:主成分分析主要考核得到软件的计算结果后如何选择主成分个数,由于主成分一般不具有 明确的意义,因此不考核主成分的解释,这会放在因子分析考核。该题是一个很标准的题目,答 案可以从任何一本教科书上找到。请注意题干中的“大致原则”,说明该原则在不同的运用场合 下选择标准会略有改变
2.主成分分析计算分为根据相关系数和协方差矩阵两种方式,以下哪种情况适合用相关系数计算( )?
A.变量的量纲不同
B. 变量的方差不同
C. 变量的标准差不同
D. 变量的均值不同
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12