京公网安备 11010802034615号
经营许可证编号:京B2-20210330
前几天公司面试了几个数据分析岗位,一连面试了一周,结果没有一个被录取,感触颇深。
数据分析师每天需要接触大量的数据,可是这些候选人连最基础的拆解业务场景,制定数据指标,以及通过什么样的工具去分析结果都不知道。
今天我们聊聊数据分析师需要掌握哪些技能?才能满足我们的日常工作呢?
统计学是数据分析的基石,学了统计学,你会发现很多时候的分析并不那么准确。比如很多人喜欢用平均数去分析一个事物的结果,但是这往往是粗糙的的。而统计学可以帮助我们以更科学的角度看待数据,逐步接近这个数据背后的“真相”。
以下内容需要重点学习:
1.基本的统计量:均值、中位数、众数、方差、标准差、百分位数等。
2.概率分布:几何分布、二项分布、泊松分布、正态分布等。3.总体和样本:了解基本概念,抽样的概念。
4.置信区间与假设检验:如何进行验证分析?
5.相关性与回归分析:一般数据分析的基本模型。
(本段内容来源知乎:李启方)
1.Excel:这个无需多说了,excel中最实用的是数据整理技巧,函数和透视表功能。
2.SQL:SQL语句用来取数,省时省力,纵观目前所有的招聘网站,都会要求熟悉SQL。这不是可选项,是必须项。
3.Python:目前最好火的编程语言,用于大数据的挖掘和分析。想成为高级数据分析师,Python是必须要好好学习下的,丰富的库,让Python成为人工智能,大数据分析的代表。Python入门容易,精通有点难,需要终身学习。
数据分析分等级的,有的只负责清洗数据,工作也比较简单;还有就是负责建模的,掌握常用的十多个机器学习算法也算不错。
sql在数据库里是核心技术,在数据分析学习时一定要重视这些内容,主要以MySQL为主,MySQL就是互联网行业的通用标准。
数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。
当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。
以上技能就是小编整理出来的,希望可以帮助到大家。一个优秀的数据分析师应该以数据价值为导向,放眼全局、立足业务、善于 沟通,认真对待每一次的数据分析工作,在工作中快速成长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27