
编译:Mika
【导读】
信息爆炸时代,经过精心设计、形象生动的可视化图表往往要比一篇深度长文章更容易赢得眼球和青睐。
在一次TED演讲中,信息设计师汤米·麦考尔追溯了长达几个世纪的图形和图表的演变过程,并展示了复杂的数据是如何通过处理,演变为清晰、美观的可视化形式的。
我爱信息图表。
作为一个信息设计师,在过去25年中我跟各种各样的数据打交道。今天跟大家分享一些我的见解。
首先让我们聊一聊历史。
沟通是对信息的编码、传输和解码。沟通的突破标志着人类文化的转折点。在沟通方面,语言、文字和算术能力得到了很大的发展。它们让我们可以把想法编码为文字,并量化成数字。没有沟通能力,人类的发展将会停滞在石器时代。
尽管人类已经存在25万年,但仅在8000年前,才出现原始文字。在将近3000年后,首个正式的书写系统才成形。地图已存在了几千年,图表出现了数百年之久。
但通过图形来表示数量,还是一个相对较新的发展领域。
直至1786年,威廉·普莱费尔发明的首个条形图,这才催生了对数量信息的视觉显示形式。
1786年 威廉·普莱费尔发明的首个条形图
15年后,他引入了首个饼图和面积图。他这些发明仍是今天最常使用的图表类型。
1801年 威廉·普莱费尔的饼图和面积图
1857年,弗洛伦斯·南丁格尔发明了鸡冠花图 (又名南丁格尔玫瑰图),用来来向维多利亚女王介绍军队的死亡率。在用蓝色强调的部分,她展示了军队的大多数死亡可以如何被避免。
1857年 弗洛伦斯·南丁格尔的鸡冠花图
不久之后,查尔斯·米纳德绘制了拿破仑进军莫斯科的图表。其中展示了一支42.2万人的军队是如何在战斗、地理和冰冻的影响下付出惨痛代价,最终减少到只有1万人的。这当中,他将桑基图与制图以及温度线图表结合在一起。
1861年 查尔斯·米纳德 绘制的拿破仑进军莫斯科图
用图表让数据会说话
当有很多数据可用是,我总是很激动,特别是当它产生出有趣的图表形式时。
看到这张整理数千份联邦能源补贴数据的图,南丁格尔玫瑰图是它的灵感来源。图中仔细显示出,相比化石能源,可再生能源投入不足。
联邦能源补贴数据图
这个桑基图展示了美国经济中的能源流动,强调了近一半的能源消耗是作为废热流失的。
美国经济中的能源流动
我喜欢把数据用美观的形式展现。
在这里,硅谷女性的个人和职业联系可以被绘制成弧线。
硅谷女性的个人和职业联系
同时,全球范围内发明家的协作也可被绘制出来。
全球范围内发明家的协作图
我甚至为自己制作了图表。
我擅长数字领域,但我的拼字游戏玩得差劲。我做了这个图表来记住官方拼字字典里的所有两个字母和三个字母的单词。熟知这1168个单词显然是我的制胜法则。
有些时候我编写代码 ,去把数千个数据点快速生成图片,编程也让我可以制作交互式图表。现在我们还可以根据自己的条件来导航信息。
图表能让数据一目了然
奇特的图表当然看起来很酷,但又是很小且简单的一个点就足以满足所需,从去解决特定的思考任务。
2006年,纽约时报重新设计他们的市场板块。将原本多达8页的股票列表削减到只有1页半的基本市场数据。其中列出了最常用的股票指标,但我想帮助投资者了解这些股票表现如何。
因此我增加了一个简单小点,用来展示现在价格在一年内的水平。这样只需看一眼,价值投资者就可以通过靠近左边的点去挑选出股价接近低位的股票;短线投资者可以通过靠近右边的点找出上升趋势的股票。
2006年 纽约时报重新设计的股票板块
不久之后,华尔街日报复制了这个设计,从而简单化通常是大部分图表的目标。
一张好的图胜过千言万语
但有时候我们需要复杂性,并充分展现出大量数据集。
盖洛普公司的前主席--亚力克·盖洛普,他有次给了我一本非常厚的书。数百页纸涵盖了60年的总统支持率数据。
我告诉他,整本书可以图表化在一页上。他说 "这不可能”。
这张就是,在一页中展示2万5千个数据点。
只需一眼就可以看出:多数总统以高支持率开场,但很少能够维持。像战争那样的事件最初会提升支持率,丑闻会引发下降。这些重要事件能在图表中被注释,在书中可不行。
数据可视化能力将越来越重要
要点在于,图表可以用惊人的效率传输数据。
图形能力,即读图和画图的能力仍然处于早期阶段。
新的图表将会出现,专业的用语将会发展。图表可以帮我们更快地思考,比如在一页纸上就看到整本书的信息,这就是开启新发现的关键。
我们的视觉皮层是用来解码复杂信息的,而且还非常擅长模式识别。如今,通过图形能力、数据可视化能力,我们能充分利用大脑内置GPU,从而轻松处理海量数据,去发现藏在里面的金子!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10