
编译:Mika
【导读】
信息爆炸时代,经过精心设计、形象生动的可视化图表往往要比一篇深度长文章更容易赢得眼球和青睐。
在一次TED演讲中,信息设计师汤米·麦考尔追溯了长达几个世纪的图形和图表的演变过程,并展示了复杂的数据是如何通过处理,演变为清晰、美观的可视化形式的。
我爱信息图表。
作为一个信息设计师,在过去25年中我跟各种各样的数据打交道。今天跟大家分享一些我的见解。
首先让我们聊一聊历史。
沟通是对信息的编码、传输和解码。沟通的突破标志着人类文化的转折点。在沟通方面,语言、文字和算术能力得到了很大的发展。它们让我们可以把想法编码为文字,并量化成数字。没有沟通能力,人类的发展将会停滞在石器时代。
尽管人类已经存在25万年,但仅在8000年前,才出现原始文字。在将近3000年后,首个正式的书写系统才成形。地图已存在了几千年,图表出现了数百年之久。
但通过图形来表示数量,还是一个相对较新的发展领域。
直至1786年,威廉·普莱费尔发明的首个条形图,这才催生了对数量信息的视觉显示形式。
1786年 威廉·普莱费尔发明的首个条形图
15年后,他引入了首个饼图和面积图。他这些发明仍是今天最常使用的图表类型。
1801年 威廉·普莱费尔的饼图和面积图
1857年,弗洛伦斯·南丁格尔发明了鸡冠花图 (又名南丁格尔玫瑰图),用来来向维多利亚女王介绍军队的死亡率。在用蓝色强调的部分,她展示了军队的大多数死亡可以如何被避免。
1857年 弗洛伦斯·南丁格尔的鸡冠花图
不久之后,查尔斯·米纳德绘制了拿破仑进军莫斯科的图表。其中展示了一支42.2万人的军队是如何在战斗、地理和冰冻的影响下付出惨痛代价,最终减少到只有1万人的。这当中,他将桑基图与制图以及温度线图表结合在一起。
1861年 查尔斯·米纳德 绘制的拿破仑进军莫斯科图
用图表让数据会说话
当有很多数据可用是,我总是很激动,特别是当它产生出有趣的图表形式时。
看到这张整理数千份联邦能源补贴数据的图,南丁格尔玫瑰图是它的灵感来源。图中仔细显示出,相比化石能源,可再生能源投入不足。
联邦能源补贴数据图
这个桑基图展示了美国经济中的能源流动,强调了近一半的能源消耗是作为废热流失的。
美国经济中的能源流动
我喜欢把数据用美观的形式展现。
在这里,硅谷女性的个人和职业联系可以被绘制成弧线。
硅谷女性的个人和职业联系
同时,全球范围内发明家的协作也可被绘制出来。
全球范围内发明家的协作图
我甚至为自己制作了图表。
我擅长数字领域,但我的拼字游戏玩得差劲。我做了这个图表来记住官方拼字字典里的所有两个字母和三个字母的单词。熟知这1168个单词显然是我的制胜法则。
有些时候我编写代码 ,去把数千个数据点快速生成图片,编程也让我可以制作交互式图表。现在我们还可以根据自己的条件来导航信息。
图表能让数据一目了然
奇特的图表当然看起来很酷,但又是很小且简单的一个点就足以满足所需,从去解决特定的思考任务。
2006年,纽约时报重新设计他们的市场板块。将原本多达8页的股票列表削减到只有1页半的基本市场数据。其中列出了最常用的股票指标,但我想帮助投资者了解这些股票表现如何。
因此我增加了一个简单小点,用来展示现在价格在一年内的水平。这样只需看一眼,价值投资者就可以通过靠近左边的点去挑选出股价接近低位的股票;短线投资者可以通过靠近右边的点找出上升趋势的股票。
2006年 纽约时报重新设计的股票板块
不久之后,华尔街日报复制了这个设计,从而简单化通常是大部分图表的目标。
一张好的图胜过千言万语
但有时候我们需要复杂性,并充分展现出大量数据集。
盖洛普公司的前主席--亚力克·盖洛普,他有次给了我一本非常厚的书。数百页纸涵盖了60年的总统支持率数据。
我告诉他,整本书可以图表化在一页上。他说 "这不可能”。
这张就是,在一页中展示2万5千个数据点。
只需一眼就可以看出:多数总统以高支持率开场,但很少能够维持。像战争那样的事件最初会提升支持率,丑闻会引发下降。这些重要事件能在图表中被注释,在书中可不行。
数据可视化能力将越来越重要
要点在于,图表可以用惊人的效率传输数据。
图形能力,即读图和画图的能力仍然处于早期阶段。
新的图表将会出现,专业的用语将会发展。图表可以帮我们更快地思考,比如在一页纸上就看到整本书的信息,这就是开启新发现的关键。
我们的视觉皮层是用来解码复杂信息的,而且还非常擅长模式识别。如今,通过图形能力、数据可视化能力,我们能充分利用大脑内置GPU,从而轻松处理海量数据,去发现藏在里面的金子!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11