
编译:Mika
【导读】
信息爆炸时代,经过精心设计、形象生动的可视化图表往往要比一篇深度长文章更容易赢得眼球和青睐。
在一次TED演讲中,信息设计师汤米·麦考尔追溯了长达几个世纪的图形和图表的演变过程,并展示了复杂的数据是如何通过处理,演变为清晰、美观的可视化形式的。
我爱信息图表。
作为一个信息设计师,在过去25年中我跟各种各样的数据打交道。今天跟大家分享一些我的见解。
首先让我们聊一聊历史。
沟通是对信息的编码、传输和解码。沟通的突破标志着人类文化的转折点。在沟通方面,语言、文字和算术能力得到了很大的发展。它们让我们可以把想法编码为文字,并量化成数字。没有沟通能力,人类的发展将会停滞在石器时代。
尽管人类已经存在25万年,但仅在8000年前,才出现原始文字。在将近3000年后,首个正式的书写系统才成形。地图已存在了几千年,图表出现了数百年之久。
但通过图形来表示数量,还是一个相对较新的发展领域。
直至1786年,威廉·普莱费尔发明的首个条形图,这才催生了对数量信息的视觉显示形式。
1786年 威廉·普莱费尔发明的首个条形图
15年后,他引入了首个饼图和面积图。他这些发明仍是今天最常使用的图表类型。
1801年 威廉·普莱费尔的饼图和面积图
1857年,弗洛伦斯·南丁格尔发明了鸡冠花图 (又名南丁格尔玫瑰图),用来来向维多利亚女王介绍军队的死亡率。在用蓝色强调的部分,她展示了军队的大多数死亡可以如何被避免。
1857年 弗洛伦斯·南丁格尔的鸡冠花图
不久之后,查尔斯·米纳德绘制了拿破仑进军莫斯科的图表。其中展示了一支42.2万人的军队是如何在战斗、地理和冰冻的影响下付出惨痛代价,最终减少到只有1万人的。这当中,他将桑基图与制图以及温度线图表结合在一起。
1861年 查尔斯·米纳德 绘制的拿破仑进军莫斯科图
用图表让数据会说话
当有很多数据可用是,我总是很激动,特别是当它产生出有趣的图表形式时。
看到这张整理数千份联邦能源补贴数据的图,南丁格尔玫瑰图是它的灵感来源。图中仔细显示出,相比化石能源,可再生能源投入不足。
联邦能源补贴数据图
这个桑基图展示了美国经济中的能源流动,强调了近一半的能源消耗是作为废热流失的。
美国经济中的能源流动
我喜欢把数据用美观的形式展现。
在这里,硅谷女性的个人和职业联系可以被绘制成弧线。
硅谷女性的个人和职业联系
同时,全球范围内发明家的协作也可被绘制出来。
全球范围内发明家的协作图
我甚至为自己制作了图表。
我擅长数字领域,但我的拼字游戏玩得差劲。我做了这个图表来记住官方拼字字典里的所有两个字母和三个字母的单词。熟知这1168个单词显然是我的制胜法则。
有些时候我编写代码 ,去把数千个数据点快速生成图片,编程也让我可以制作交互式图表。现在我们还可以根据自己的条件来导航信息。
图表能让数据一目了然
奇特的图表当然看起来很酷,但又是很小且简单的一个点就足以满足所需,从去解决特定的思考任务。
2006年,纽约时报重新设计他们的市场板块。将原本多达8页的股票列表削减到只有1页半的基本市场数据。其中列出了最常用的股票指标,但我想帮助投资者了解这些股票表现如何。
因此我增加了一个简单小点,用来展示现在价格在一年内的水平。这样只需看一眼,价值投资者就可以通过靠近左边的点去挑选出股价接近低位的股票;短线投资者可以通过靠近右边的点找出上升趋势的股票。
2006年 纽约时报重新设计的股票板块
不久之后,华尔街日报复制了这个设计,从而简单化通常是大部分图表的目标。
一张好的图胜过千言万语
但有时候我们需要复杂性,并充分展现出大量数据集。
盖洛普公司的前主席--亚力克·盖洛普,他有次给了我一本非常厚的书。数百页纸涵盖了60年的总统支持率数据。
我告诉他,整本书可以图表化在一页上。他说 "这不可能”。
这张就是,在一页中展示2万5千个数据点。
只需一眼就可以看出:多数总统以高支持率开场,但很少能够维持。像战争那样的事件最初会提升支持率,丑闻会引发下降。这些重要事件能在图表中被注释,在书中可不行。
数据可视化能力将越来越重要
要点在于,图表可以用惊人的效率传输数据。
图形能力,即读图和画图的能力仍然处于早期阶段。
新的图表将会出现,专业的用语将会发展。图表可以帮我们更快地思考,比如在一页纸上就看到整本书的信息,这就是开启新发现的关键。
我们的视觉皮层是用来解码复杂信息的,而且还非常擅长模式识别。如今,通过图形能力、数据可视化能力,我们能充分利用大脑内置GPU,从而轻松处理海量数据,去发现藏在里面的金子!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26