京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:丁点帮你
作者:丁点helper
什么叫经济增长?最简单的理解就是,一个经济体,通常是一个国家,生产出来越来越多的产品(包括服务)为人所用。
所以为了方便起见,我们就不说产品和服务,而是统称为“产出”,一般用字母
表示。
因此,单单用数据来看,经济增长就是指经济中的产出量越来越大,同时,因为这些产出最终都被人消耗掉了,所以也可以理解为经济中被使用的产品和服务越来越多。
前者是从“供给”的角度在描述,后者是从"需求“的角度来说。所以,研究经济增长,实际上可以从供给和需求两个角度分别切入:
从供给侧来看经济的生产能力是如何扩大的;从需求侧来看经济人的需求是如何得到越来越多的满足的。
从供给面来分析经济增长,核心问题是:经济中的产出为什么会越来越多?
要解答这个问题,我们需要引入一个数量分析的框架——生产函数(production function)。
这里我们先不从数学的角度来关心这个函数具体长什么样子,而是把它看做一个整体,或者说一个”魔盒“。
可以说,正是这个盒子将我们经济活动中投入的生产要素与产出联系起来了。
我们都知道,谈到函数,首先想两个问题:自变量和因变量。
对于这里的生产函数,因变量就是"产出",用Y表示;自变量就是K和L,分别代表了资本(如厂房、机器、设备等)和劳动力两大类。
用数学公式来表示就是:
Y即产出(可以理解为GDP),K表示资本存量,L表示劳动力投入,
就是所谓的”生产函数“。
这是最简单的生产函数的形式,很好理解。
比如,我们要生产面包,当然需要面包机(资本K),还需要面包工人(劳动力L),只有将两者有机地整合在一起,才可能生产出面包(产出Y)。
除了资本和劳动力之外,还有一种要素会影响面包的产出,即技术的进步,一般用A表示。
注意:这里的技术并非仅是大家一般以为的科学技术,它实际还包括管理水平等”软实力“,是一个十分宽泛的概念。
引入技术之后,生产函数可变为:
在这种生产函数下,A被称作全要素生产率(total factor productivity,简称TFP)。
这里的”全“字意味着,技术的进步会同时提升资本和劳动力的产出效率。
虽然我们现在没有具体的分析生产函数的具体形式,但有一个性质是我们必须要谈的:生产要素的边际产量递减(diminishing marginal product)。
前面说了,资本和劳动力是最常见的两种生产要素,所以生产要素的边际产量递减,就意味着劳动的边际产量递减、资本的边际产量也递减。
边际产量英文为:Marginal Production;
进而劳动的边际产量就表示为:Marginal Production of Labor, 简写为 MPL;
资本的边际产量即为 Marginal Production of Capital, MPK。
用简单的数学式子表示就是:
这里一连出了好几个”边际“,估计同学们都搞晕了。
什么叫边际?其实我们可以直接理解为”新增“:劳动的边际产量就是:新增的劳动力带来的新增的产出。
比如,新开的面包店,雇用第一名工人时,他每天可以生产20块面包;此时再雇用第二名工人(新增的劳动力),就会带来面包总数的增加,比如现在一共可以生产35块面包。
35是总数,可是因为新雇用的第二名工人带来的面包产量的增加是多少呢?
就是35-20=15;也就是说,新增一名工人带来的新增的面包是15,这就是第二名工人的边际产量。
对比第一个工人,当只有他一个人的时候,他能制作的面包是20块,即20就是第一个工人的边际产量。
很明显,15小于20,意味着雇用的第二名工人的边际产量小于第一名工人。这就是所谓的劳动力边际产量递减的规律。
刚开始接触经济学时可能会觉得这个不可思议,这里往往是跟规模效应弄混了。
实际上,边际产量递减是经济学中少有的所谓的”铁律“,即几乎不管在什么情况下都会成立的规律。
我们可以尝试从反面解释一下,即如果边际产量递增会怎样?
边际产量递增意味着你每次多雇用一名工人,他所带来的面包的产量(也就是他的边际产量)会增加,也就是说比他上一名工人生产的还多,
这意味着,只要我们不断的雇用工人,面包就会越来越多。
这显然是不符合实际的!
因为如果边际产量递增,那我们只需无止境地雇用劳动,就可以生产出越来越多的产品,而不需要做任何其他的改善。
可是现实是,一个工厂所能容纳的工人一定是有限的,超出了这个限度,产量不会增加,甚至会下降。
这里我们引入这个规律后就会明白,虽然每种要素投入越多,产出就越多,但随着要素的增加,新增所带来的产出的增量其实是越来越少的。
如果用数学的语言来描述可能会更直接和准确:
因为Y是K和L的函数,所以我们可以把Y对K和L求导:
求导出来,一阶导是正的,意味着随着K或者L的增加,Y增加;但是其二阶导就是负的,即新增带来的新增是下降的。
用图形来表示:
上述这条曲线表示,当资本量不变的情况下(
),产出如何取决于劳动投入,即劳动的边际产量(MPL)。随着劳动量的增加,生产函数变得更加平坦,表明劳动边际产量递减。
当然,资本有这样一致的规律。
以上就是从供给面分析经济需要掌握的两个入门的内容,后续的分析就需要在此基础上进行,这便是我们下一期文章的内容。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16