京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:麦叔编程
作者:麦叔
练武的人都知道:练武不练功,到老一场空!
说的是只练花架子,不练习内功,最终也都是一个菜鸟级武师。
学习编程何尝不是!我时常见到已经学习相当一段时间的程序员,连稍微深点的基本知识都没有掌握。可叹,可悲啊!根子不牢,注定走不远啊!
基于实例学习编程非常重要,也非常有效,但与此同时,我们也必须不断的加强基本功的学习,刻意的加强相关的技术。掌握技术脉络,加强各项技术,跳出编程语言本身,练好内功,才能爬的又快又好,成为一个高级的爬虫工程师!
本文从爬虫的技术原理出发,讨论了Python爬虫工程师必须掌握和不断加强的几项技术。
除此之外,网站会有各种反爬取技术,爬虫工程师和网站开发工程一个攻,一个守,斗智斗勇。
另外,爬虫10个网页和爬取10000个网站是不同的概念,你需要维护要爬取的数以万计的URL,设置更新频率,去掉不需要的URL等等,查看各个网站的爬取状态等,这就是一个工程化的问题。商业级的爬虫涉及到很多工程化问题。
就像家庭作坊可以就在自己院子里,一家人就能生产出少量的产品。但要大量生成就需要厂房,财务,人事等企业框架和管理制度、
下面列举了爬虫工程师需要不断掌握和精进的基本功技术:
HTTP协议是爬虫和网页交流的语言,如果不懂这个语言,你肯定不能成为一个有效的爬虫工程师。你也不需要成为一个协议专家,主要掌握请求,相应,header,cookie等就可以了。
我们看到的网页基本都是HTML的格式,我们要从HTML的脚本中找出所需要的信息,就必须掌握HTML的格式。
同样的一个HTML页面,我们可以展现不同的样式。我们通过CSS来指定样式,比如指定表格用什么背景颜色,文字用什么字体等。
这些样式,本来不是爬虫工程师在意的事情,因为我们只在意数据。但是通过CSS,我们可以有效的定位到某些数据,所以CSS还是需要学习的,后面的数据解析部分会再次提到CSS。
HTML是完全静态的网页,为了在网页上实现动态效果,就有了JavaScript。很多网页上的数据并没有直接在HTML中给出,而是通过JavaScript后续又加载出来的。
实际上,JavaScript是编程语言排行榜上很靠前的编程语言,所谓的前端开发者需要精通JavaScript,而爬虫工程师了解基本的知识,知道Ajax请求的相关原理,有时候还要知道如何用JavaScript加密,就差不多了。
JSON是JavaScript Object Notation的意思,可以理解成一种数据结构。一般的数据API都是以JSON格式的:
我们需要用某种技术,从HTML中找出我们想要的数据,xpath是其中一种。简单说,就是通过路径来找到想要的数据:
通过指定样式,我们也可以定位到指定的数据,再解析数据:
因为喜欢Jquery的原因,我个人更喜欢CSS选择器。
前两种数据解析都是基于结构的解析方式,而正则表达式(re)就把HTML当成一个文本,不在意其中的结构,用字符串的规则解析数据:
CSV是用逗号隔开的一种纯文本的数据格式,是数据分析和处理中最常用的格式。CSV可以用记事本打开,也可以用Excel打开。
把数据存储在CSV等文本中很方便,但是数据的查询和处理不方便,为了解决这个问题,我们可以会把数据保存在数据库中。
这是很广阔的领域,数据库是计算机技术中最重要分分支之一。值得你不断地学习和精进。相比前面的HTML等,你只要几个小时就可以学会了,后面也不怎么需要更新知识。
关于反爬技术,请看我另外一篇文章:
搞疯爬虫程序员的8个难点!!
在Python的世界里,工程化最常用的就是Scrapy框架,它使用组件化的方式分解了爬虫所需要处理的事情,让你可以集中在最关键的地方,剩下的管理工作交给框架来完成。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01