京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:AI入门学习
作者:伍正祥
在克里米亚战争期间,南丁格尔发现战地医院的卫生条件恶劣导致很多士兵死亡。因此,她开始研究伤员的死亡和卫生环境的关系,并试图用统计数据说服维多利亚女王改善军事医院的卫生条件。但是她也担心,女王那么忙,没有时间看她那厚厚的报告和那些复杂的表格数据。于是,她设计了上面的这个生动又有趣的图表,巧妙的展示了部队医院季节性的死亡率。她自己给它取名叫鸡冠花图(coxcomb)。
我们先来看看最早的南丁格尔玫瑰图展示了什么样的数据。这张图展示的是1854年4月到1855年3月这一年间士兵的死亡情况。其中:
1)绿色表示死于可预防疾病的士兵人数;
2)红色表示死于枪伤的人数;
3)黑色表示死于其他意外的人数。
从图中可以看出,在这一年间,死亡人数最多的并不是在战争中受枪伤(红色部分),大部分的士兵是死于可预防疾病(绿色部分),特别是冬天的时候(1854年11月-1855年2月),死于可预防疾病的士兵人数大幅增加。这也反映出医院的卫生条件、保暖对于伤员的康复是多么的重要。因此,才说服了女王大人改善医院条件。
这么有气质的图表,我们来看看经过这么多年的发展,大家都是怎么用的。尽管外形很像饼图,但本质上来说,南丁格尔玫瑰图更像在极坐标下绘制的柱状图或堆叠柱状图。只不过,它用半径来反映数值(而饼图是以扇形的弧度来表示数据的)。但是,由于半径和面积之间是平方的关系,视觉上,南丁格尔玫瑰图会将数据的比例夸大。因此,当我们追求数据的准确性时,玫瑰图不一定是个好的选择。但反过来说,当我们需要对比非常相近的数值时,适当的夸大会有助于分辨。
1. Facebook 和 twitter的用户对比
1)图表中包括性别、年龄、教育、收入等11个分类的对比信息指标,每个指标占用的圆周的角度相同,即任一指标的扇区角度为(360/11=32.723度)。
2)在“Gender”,“Income”,“Age”,“Education”四个指标中,又被分别划成几个不同的区段。
2、新冠肺炎全球疫情形势
案例1:facebook数据
直接使用上面facebook的数据,关注公众号AI入门学习回复【facebook】获取csv文件,用R语言画个示例,数据格式需要长格式,如下:
#facebooks数据 library(ggplot2)
facebook = read.csv("facebook.csv",header=T,stringsAsFactors = FALSE)
ggplot(facebook, aes(x = 类别1,y=比例,fill = 类别2)) +
geom_bar(alpha = 0.93,stat="identity") +
coord_polar()+
theme_bw()+
theme(panel.background = element_rect(fill = "black"))+
theme(axis.text = element_blank())+
theme(axis.ticks = element_blank())+# 去掉左上角的刻度线 theme(axis.title = element_blank())+
theme(legend.position = 'none')+# 去掉图例 theme(panel.border = element_blank())+# 去掉外层边框
theme(panel.background = element_rect(fill = "black"))+ #黑色背景 theme(panel.grid.major.x = element_line(colour =
"SpringGreen2", size = 0.3))+ #网格线设置 theme(panel.grid.major.y =
element_line(colour = "SpringGreen2", size = 0.3))+ #网格线设置 ylim(-0.3,1.1)+
scale_fill_discrete(c=1000, l=100)
ggsave('rose.png',dpi = 1080)#保存为高清格式,dpi越大越清晰
图形如下,可以根据个人喜好对颜色进行切换,当然,各种标注,可以在PPT中完成,多个对比的,也可以在PPT中进行拼接。
用R自带数据集画一个不带网格线的
dsmall = diamonds[sample(nrow(diamonds),5000),] ggplot(dsmall, aes(x = clarity, fill = cut)) + geom_bar(alpha = 0.85) + coord_polar() + theme_bw() + theme(panel.background = element_rect(fill = "black"))+ theme(axis.text = element_blank())+ theme(axis.ticks = element_blank())+# 去掉左上角的刻度线 theme(axis.title = element_blank())+ theme(legend.position = 'none')+# 去掉图例 theme(panel.border = element_blank())+# 去掉外层边框
theme(panel.background = element_rect(fill = "black"))+ #黑色背景 theme(panel.grid=element_blank())+
ylim(-50,1000)+
scale_fill_manual(values = alpha(c("DarkOrchid1", "SpringGreen", "Magenta","Cyan","OrangeRed1")))
ggsave('rose.png',dpi = 1080)
案例2:多图组合
首先,介绍个函数,多个图组合到一起的
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {
library(grid)
plots <- c(list(...), plotlist)
numPlots = length(plots)
if (is.null(layout)) {
layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),
ncol = cols, nrow = ceiling(numPlots/cols))
}
if (numPlots==1) {
print(plots[[1]])
} else {
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))
for (i in 1:numPlots) {
matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))
print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
layout.pos.col = matchidx$col))
}
}
}
开始绘图部分,下六组数据替换分别跑一次,得到 p1,p2,p3,p4,p5,p6,然后用上面定义的函数组合即可
par(mar=c(0,0,0,0)) #c(4,3,8,2,2,1) #c(4,3,5,2,2,10) #c(15,3,5,8,2,8) #c(1,3,5,3,2,8)
#c(1,3,9,3,2,3) #c(2,12,9,3,2,3) data = data.frame(value= c(2,12,9,3,2,3), type = c('B','A','C','D','E',F))
p1 =
ggplot(data, aes(x =type, y=value, fill=type)) +
geom_bar(stat = "identity", alpha = 0.99) +
coord_polar() +
theme_bw() +
theme(panel.background = element_rect(fill = "black"))+
theme(axis.text = element_blank())+
theme(axis.ticks = element_blank())+# 去掉左上角的刻度线 theme(axis.title = element_blank())+
theme(legend.position = 'none')+# 去掉图例 theme(panel.border = element_blank())+# 去掉外层边框 theme(panel.background =
element_rect(fill = "black"))+ #黑色背景 theme(panel.grid=element_blank())+
scale_fill_manual(values = alpha(c("OrangeRed1", 'gray91',"SpringGreen", "Magenta","Cyan", "DarkOrchid1")))
multiplot(p1,p2,p3,p4,p5,p6,cols=3)
结果如下:
重新替换一批数据得到下图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05