京公网安备 11010802034615号
经营许可证编号:京B2-20210330
第二届中国互联网基础资源大会(CNIRC 2020)召开,会上指出中国数字经济规模从11万亿元,增长到2019年的35.8万亿元,占GDP比重超36%,对GDP贡献率达到了67.7%。
2021年,数字经济规模或持续快速增长。可见,数字经济正在聚集强大的内需力量,将成社会势不可挡一次变革,疫情没改变这个趋势,反而加速了这个趋势。
未来的世界,在所有不确定性中或有几项非常确定,一是整个国家数字化方向非常确定;二是未来十年传统行业数字化非常确定。
数字经济和实体经济是一体两面,随着科技的日新月异,对人工智能和大数据人才的整体需求量,比2015年增加了11倍,数字经济人才缺口巨大。
大数据决定高校专业开设导向,2020年清华大学停止了新闻学和会计学专业的本科招生,新增了一个招生专业:计算机与金融双学士学位项目。
可见,数字化金融正在逐渐普及,除高尖端企业对这类求职者需求量大之外,传统金融行业也迫切需要这类新鲜血液的注入,故而未来数据经济型人才将受到全社会的青睐。
智能操作风控
众所周知,金融行业几乎所有环节都与数据息息相关,数字化已成金融科技创新的首要任务。
未来几年内,各大金融企业急需培养一批具备相应业务知识,且能够较为熟练掌握各类数据分析工具的专业人才,用大数据来驱动业务的决策。
同时,随着数字经济的飞速发展,各大金融企业为跟上时代的进程,亦纷纷制定了数字化转型愿景和战略,力图加快企业的数字化进程。
这趟数字经济快车,承载着无数的机会与发展,它抛出了无数橄榄枝,成数字经济型人才方能抓住这个大好机会,你准备好了吗?
为助力对金融行业感兴趣的高年级学生或从业者,顺利数字化转型。CDA历经5年研发,3年内训实践,重磅推出了“金融数字化转型人才训练营”。在原有CDA数据分析师认证体系基础上,突出金融行业的数据应用特点。
同时,与国际知名企业架构Togaf、数据管理和治理体系DMBOK、IT治理COBIT认证体系相融合,培养学员建立金融数据应用理论框架和实操落地的能力。
“金融数字化转型人才训练营”为大家精彩呈现了如何发现业务问题、整理数据、建立模型、编写报告、构建业务应用数字化解决方案。
同时,更是力图为金融从业者提供个人数字化转型的解决方案,转型成为组织内部数字化赋能者。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05