
公众号:数据海洋
作者:数据海洋
“一个公司数据指标体系好坏,直接决定数据应用的好坏!”
先请各位看官一起思考下面这些问题:
· 什么是数据指标?
· 数据指标价值是什么?
· 数据指标谁来运营?
· 谁在用数据指标?
· 好数据指标的特征有哪些?
先思考这几个问题。
数据指标是企业运营过程中,对已记录历史信息进行处理,转化成为数字。根据特定商业目的:对相关数字按一定的业务逻辑,使用一定的技术手段进行加工处理后,成为描述、衡量、分析、预测业务结果的工具。
这个定义是我自己的理解和经验总结。
1、数据指标核心是服务商业的。例如:让你很清楚公司的经营状况。通过本月累计销额指标你可以知道你的业务进度是否达到目标;通过销售额占比数据指标的分析你可以很清楚知道与同行比你处于什么水平。
2、数据指标的统计是有逻辑的。你为什么要设计这个指标,用来衡量什么,通过这个指标的变化你可以反映出业务背后有什么变化。例如:客单价,衡量的是用户购买情况;客单价变化可以反映用户在你这购买意愿的变化。
3、数据指标需要使用一定的技术手段。其实整个数据指标是作为大数据平台处理数据的指导。我们说ETL的开发,数据计算能力、存储的要求,就是围绕指标与对指标拆分、关联的维度来决策的。
数据指标的价值,核心一点是:数据指标是服务商业的。通过使用数据指标,对数据进行分析,更清楚了解自己企业经营状况,可以更快,更好的做出各种决策,从而让企业的决策风险降低,更容易把握市场机会,提升商业目标,帮助企业取得竞争优势的一种“工具”。
既然是工具,就没有好坏,就看你能不能用好,适合不适合你用。
一般来说,数据指标是由业务团队来定义,然后技术团队/数据团队负责实现。业务看的数据指标一般是以报表,仪表盘,图表等为载体。
为什么数据指标是需要运营呢?运营就意味着数据指标的定义不是一直不变的,因为是服务商业的,商业一定是不断变化中的。大公司都会有数据指标生命周期管理的机制,也就是会有一套元数据管理工具。但对于大多数公司来说,有一份excel能清晰记录最好的数据指标大家随时可以查就不错了。
数据指标的用户应该是公司的各个角色。不同角色关注的指标内容不一样。
如果从我们数据应用角度来看,数据指标是后续数据报表、数据分析、数据挖掘用到最基础的原材料,如果原材料不好,后面的数据分析、数据挖掘不管用多么先进的方法都是白搭。
“如果连数据指标都统计不对,后面都是在做无用功!”
一个好的数据指标应该要符合下面的几个特征:
1、准确性。这是最根本的一条原则。这个准确有二个层面的意思,一个是数据指标在技术实现过程中,是准确的,不会出现代码逻辑写错,源数据取错。二个统计源数据的源头的数据是对的,如果统计数据指标的基础数据都是错了,那就更666了!一个公司数据收集与记录的准确、完整也一定是一个持续迭代的工程,当然这属于哪一个话题,有空再论。
2、有效性。数据指标的能真实反映要能衡量相对的业务场景商业目标,例如:要针对衡量一个网站流量质量设计一个指标,使用UV来衡量是错误的。使用跳出率来衡量,有一定的有效性,但还是不够有效;使用转化率也许才是比较合适的(不同公司所要追求的商业目标不一样,所以设计的数据指标是不一样的),用最近期望用户完成的商业动作访问数/进来的访客数。【实际工作中,衡量某个场景数据指标不一定就是立即能找到最合适的】
3、周期性。数据指标需要定期去复盘。像KPI的指标定义,例如:销售额可能根据当前商业的目标不同,计算口径可能会发生很大的变化。同时,对各个数据指标也要定期进行复盘,是否还可以继续衡量,数据指标还是否有意义。随时KPI指标的变化,往往很多指标的口径也要变更,数据开发最怕就是这个,口径变换要重刷历史。
4、可实现性。在实际企业中,可能受限数据的完整性因素,很多指标没有办法计算得到。例如:公司的市场占有率往往是很难统计,因为整个市场份额这个数据很难获取。电商中每个订单的成本的计算也很难,广告费用、仓储、人员工资、仓储、物流配送等。所以在数据指标的可实现性上往往需要先实现简单的,再根据数据应用深入,数据团队技术强大不断再完善复杂的指标。
小结:每个数据指标的设计都是要涉及对商业场景的理解和熟悉的过程,数据分析师或者数据产品经理应该去思考每个数据指标刚才说的几个问题。如果只是按商业的要求写个文档,进行数据统计。那没有什么意义,你只会离业务越来越有“距离”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29