
公众号:丁点帮你
作者:丁点helper
最近的生存分析系列文章都是介绍生存曲线的估计方法的,其中一篇讲了如何通过每一例患者的生存时间绘制生存曲线、估计生存率,这种方法被称为K-M法,是因为该方法最早是由Kaplan和Meier这两个人提出的;另一篇讲了如何理解生存率的95%置信区间。
回顾一下前面讲过的例子:为了解肺癌患者接受某种治疗后的生存状况,研究者收集了12名肺癌患者治疗后的住院资料。我们将12名观察对象的生存时间由小到大依次排列,可以计算每个时间点的生存概率,进而计算每个时间点的生存率。
然而在实际工作中,经常会遇到样本含量较大的随访资料,例如大型的队列研究。研究人员只会在计划好的时间点对所有研究对象进行随访(例如每年一次),而不会与每个研究对象持续保持联系,准确记录结局发生/删失发生的具体时间。
因此,某些个体的结局/删失发生在两次随访之间,研究者就不能获得其确切的生存时间,只能确定生存时间的区间。在这种情况下,可将原始资料按照生存时间分组再进行分析。
下面我们用一个例子来看看这种方法是如何实现的。
案例:为了解尘肺患者的生存期,回顾性调查了某煤矿确诊为尘肺的患者1166人,其生存时间列于下表。
与K-M法相比,这一方法中的生存时间由一个确切时间变为了一个时间区间(上表中的『确诊年数 ti』这一列)。
这种变化类似于制作频数分布表的过程,上表是对1166名患者的生存时间做了一个频数分布表,比如第一行中的数据就表示,确诊为尘肺后,寿命少于2年的有51人。教科书中把这样整理数据并估计生存率的方法叫做寿命表法。
接下来我们来一步步搞懂上面这张表。
第(1)~(4)列
在背景中讲过,本案例中患者确切的生存时间无从知晓,只能知道在哪个区间。所以要想把1166名患者的生存时间整合起来,就需要按照生存时间的区间来整理,也就是统计每个区间的人数。
你可能会问,为什么上表是以2年为一个区间呢?其实这个区间的宽度是根据随访时间和观察例数来确定的,可根据实际情况合理调整。
一般每个区间为半闭半开区间,最后一个区间终点在无穷大。本例分成了22个时间区间。
在确定分组区间之后,就要统计每个区间内的死亡人数di、删失人数ci以及期初观察人数ni。第一个时间区间的期初观察人数是所有的观察例数;下一个区间的期初观察例数按以下公式计算:
,这和之前讲过的K-M法是一样的。
第(5)~(7)列
在计算某一时间区间内的死亡概率时,需要用该区间内的死亡人数除以该区间内的观察人数,即
。但是当区间内存在删失时,这些个体并未观察至区间的终点,因此这里用期初观察人数做分母不太妥当。只有当删失数为0时,区间内有效观察人数才等于ni。
在一个特定时间区间内,我们假定删失个体发生的时间是均匀分布的,有的在区间刚开始就删失了,有的则在区间快要结束时才删失。把这些删失个体看做一个整体,相当于一半的个体在区间开始时删失,而另一半则存活到了区间结束。因此,可以认为区间内的有效观察人数为:
也被称为期初校正人数。
接下来每一个时间区间的死亡概率和生存概率也就很好计算了:
比如第三个区间(
),66名患者死亡,死亡概率就是:66/1069.5;对应的生存概率就是:1 - 66/1069.5。
上面的计算中,分母是1069.5,这个数值是怎么来的?计算过程如下:
第(8)~(9)列
接下来的一列就是生存分析中最关心的『生存率
』这一指标了。和之前讲过的一样,各时间点的生存率就是各区间生存概率的乘积。
......注意各时间区间对应的生存率应是该区间上限时间点的生存率,例如上表中第5个区间 [8, 10)对应的生存率为0.7565,意思是某患者确诊为尘肺后预测其活过10年的生存率为75.65%,而不是活过8年的生存率。
最后,再说说为什么要出现表中最后一列『生存率的标准误
』。我们这个表中每个区间的生存率都是用样本计算出来的,要想通过样本了解总体的情况,或者说想估计总体生存率的95%置信区间,就需要用到
。具体解释和计算方法在前文中有详细介绍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27