
公众号:接地气学堂
作者:接地气的陈老师
总是听人说:数据分析师要懂业务,懂业务。懂业务确实很重要,可到底要懂到啥程度?很少有认真讨论的。更难搞的是,不管你懂多少,总会有人冒出来说你:“不懂业务呀”到底这事啥时候是个头?今天我们系统讲解一下。
之所以有“业务”的说法,是和“技术”相对的。传统的说法里,业务泛指非技术类所有工作,是企业销售、营销、风控、运营工作的笼统称呼,这些都是直面B端/C端用户,为企业挣钱的活。技术,则对应着财务、IT、法务、人力、研发等支撑性专业,这些不直面客户,在背后支持业务运作。
在咨询公司、第三方数据公司、广告公司等等少数卖数据的公司里,数据是作为产品直接销售给客户的,数据地位更贴近业务。在其他大部分企业里,数据就是支撑部门,因此要懂业务、服务业务。
要懂业务,本质上是因为:数据从业务中来,要用回业务里去。
从业务中来,有三层含义:
1、数据产生于业务流程。
l 有了门店、销售队伍,才有线下成交数据
l 建了微商城、APP,才有线上成交数据
l 搞了微商城、APP埋点,才有互动数据
业务流程如何做,分几步做,做得能不能记录,决定了有啥数据可以分析。
2、业务动作会改变数据。
l 为了赶时间上线,不埋点,就没有互动数据
l 为了提高注册转化率,不收集基础信息,用户画像就缺一堆字段
l 销售自己搞了会员卡,客人不主动提就扫到自己卡上,数据就不真实
业务怎么做,直接关系到数据质量和数量
3、数据结果会影响业务动作。
l 销售业绩不达标,业务猛冲一波,月底业绩就大涨
l 销售业绩已达标,业务藏一波单,月底业绩就平着走
l 活跃人数不够,业务直接买流量,砸活动,数据刷的呱呱好看
因为很多企业建立了数据考核制度,因此当KPI/OKR不达标的时候,业务部门就开始各种骚操作,这些骚操作又会反向影响数据结果。
因此,如果不了解业务情况,只是就数论数的话,就很难做出有深度的分析。了解业务情况,就能读出数字背后的含义(如下图)
业务不是虚幻的“商业模式”“底层逻辑”“核心思维”,更不是简单的AARRR、人货场几个字。业务是具体的系统流程、工作方式、数据记录。不去抠业务细节,就不知道数据从哪里来,受什么影响,会变成什么样,自然无法分析。
想系统化梳理业务,可以以一个具体业务流程为目标,进行梳理(如下图):
注意,不同部门,不同等级的工作,对应的业务流程是不一样的,因此想梳理的话,就得一个部门一个部门的过,分层级理解(如下图)。
除非直接卖数据(或者卖基于数据的广告类产品),否则数据是无法直接变现的。想要变现,就得结合业务动作。这就得考虑:到底现在业务需要的是什么?
l 如果业务不了解现状,就给现状描述
l 如果业务不会下判断,就给标准建议
l 如果业务不清晰趋势,就给未来预测
l 如果业务不知道原因,就给原因分析
l 如果业务分不清主次,就给综合评估
总之,具体到一个公司的一个部门的一个岗位,具体到他到底在想什么问题,才能知道到底要输出什么结论。针对性越强,输出得越准确。
如果业务不知道怎么干……你得首先看,他到底有多不知道,才能对症下药(如下图)。
所以,如果不懂业务,给出的数据结论针对性不高,就必然面对灵魂三问:
注意:业务不是一成不变的,具体到销售、营销、运营、生产、风控等具体领域以后,你会发现虽然每个领域有一些经典理论,但具体的做法却是日新月异。互联网的不断创新,还在贡献更多新玩法。因此:在业务问题上,没有懂王!掌握理解业务的方法才是关键。
对于3年经验以内的新人:
了解一个具体领域的具体业务流程的具体做法。这对于培养认真细致的钻研精神,至关重要。特别是了解数据采集方式与数据质量,这对于后续如何开展分析、选择建模方法,有关键影响。
对于3年-6年经验的中生代:
对一个具体行业(比如游戏、短视频、社区、电商、O2O……)常见玩法有了解,对一个具体细分领域(销售、营销、运营、生产、风控……)有比较深入的钻研。这些经验积累,是以后举一反三,理解更多新模式,新玩法的基础。
对于6+以上老人:
能举一反三,梳理一个新业务的逻辑;
有良好的沟通能力,能主动发起和业务的沟通,了解情况;
有独立的判断能力,能听出来业务嘴里的真假,反推动机。
到这个阶段,能熟练运用自己的能力,梳理业务情况,甚至能凭借经验主动指导业务了。
但是有一些做法,会阻碍进步哦,同学们注意避雷:
1、沉迷于“底层逻辑”“核心思维”“能力觉醒”
2、不看实际工作细节,总想找《电商行业百科全书全国统一认证版》
3、不看业务流程里数据采集点,张口“AARRR”闭口“用户画像”“精准”
4、只会从一张大宽表里拖数,数据咋来的,一问三不知
5、见过一个行业内成功案例,就认为全世界都该这么做
6、当懂王:“业务无非就是发优惠券”“互联网无非就是补贴”……
7、不可知论:“什么业务不业务,就是看老板心情……”
总之,具体问题,具体讨论,不在理论层面浅尝辄止,也不沉迷于具体某一次成功经验,才能让自己理解能力越来越强,主动梳理能力越来越高。看到这,可能有同学会想看具体例子,有兴趣的话,本篇集齐60留言,下一篇我们分享一个业务梳理的案例,敬请期待哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22