京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:丁点helper
来源:丁点帮你
今天开始学习在R语言中做描述性统计。为了便于大家边学边练,可以下载这个数据:
文件名:titanic.csv
链接:https://pan.baidu.com/s/1Pj0EsaBZdnw6mHPpeVd9Aw
密码: yuym
将本地文件导入到R中
为了便于数据管理和操作,我们通常会把数据保存为.csv格式,这是excel中的一种较为简单的数据格式。想要把一个.csv格式的数据导入R,可以用read.csv()这个函数:
# 将本地文件titanic.csv导入到R中,
# 并存储到titanic这个对象中titanic
<- read.csv("//Users//Desktop//titanic.csv",header = TRUE)
假设该本地文件存储的是1912年沉没于大西洋的巨型邮轮泰坦尼克号中乘客的基本信息。
上面第一个命令"//Users//Desktop//titanic.csv"是文件titanic.csv的本地存储地址,大家要根据自己电脑的存储位置自行调整;
第二个命令header = TRUE 是指将原文件中的第一行自动设置为文件的列名。
如果你的.csv文件中并无列名,而是希望在导入R之后再设置,则应将第二个命令设置为header = FALSE。
了解数据
上篇文章讲过,拿到一个数据库,首先要了解它的基本信息。之前已经讲过,我们简单复习一下。
class(titanic) #对象是什么数据结构[1] "data.frame"dim(titanic) #查看数据有几行几列[1] 1309 6names(titanic) #查看数据的列名[1] "pclass" "survived" "sex" "age" "sibsp" "parch" head(titanic) #查看前6行tail(titanic) #查看后6行
可以知道,titanic这个数据框中有1309条记录,6个变量。
这6个变量依次为舱位等级、是否幸存、性别、年龄、同行的兄弟姐妹或配偶数量、同行的父母或子女数量。
描述性统计
接下来我们来对titanic这个数据做描述性统计。
1. 每个等级的船舱中分别有多少人?
有两种方法,一是table()函数,用于统计分类变量pclass中各类别的频数;二是summary()函数,功能是做描述性统计,既适用于分类也适用于计数变量,可以用来统计分类变量的频数、计算计数变量的均数、百分位数等。
# 方法一table(titanic$pclass) 1st 2nd 3rd 323 277 709# 方法二summary(titanic$pclass) 1st 2nd 3rd 323 277 709
2. 遇难者与幸存者分别有多少人?
table(titanic$survived) died survived 809 500
3. 每个等级的舱位中分别有多少人遇难、多少人幸存?
本例中,按照『舱位等级』和『是否幸存』两个条件统计乘客状况,共6种可能。仍使用table()函数,统计每种可能的状况分别有多少人,生成交叉列联表。
# 将列联表存储在tab1中tab1 <- table(titanic$survived,titanic$pclass) # 查看tab1的内容tab1 1st 2nd 3rd died 123 158 528 survived 200 119 181
4. 每个等级的舱位中幸存者的比例是多少呢?
思路很简单,就是每等级舱位中幸存者的人数占该舱位总人数的比例。
1)那我们先看看每等级舱位中幸存者的人数怎么算,上面的tab1第二行就是,只需要将其提取出来,方法和前面讲过的如何提取数据框中的行和列相同:
#提取tab1的第二行tab1[2, ] 1st 2nd 3rd 200 119 181
2)每种舱位总人数?上面也已经计算过:
table(titanic$pclass) 1st 2nd 3rd 323 277 709
还有一种方法,使用apply()函数,功能是对矩阵类数据的行或列进行批量处理:
apply(tab1,2,sum) 1st 2nd 3rd 323 277 709
函数中有三个命令。第一个命令tab1表示待处理的数据;第二个命令2表示对tab1的每一列进行处理,若需处理每一行,则第二个命令应输入数字1;第三个命令sum表示求和。
因此,上述语句的意义为:对tab1中的每一列求和,即计算每个等级舱位中的总人数。
3)求每等级舱位中幸存者的人数占该舱位总人数的比例:
# 方法一 tab1[2, ]/table(titanic$pclass) 1st 2nd 3rd 0.6191950 0.4296029 0.2552891 # 方法二 tab1[2, ]/apply(tab1,2,sum) 1st 2nd 3rd 0.6191950 0.4296029 0.2552891
4)你一定也发现了,这个结果非常不美观,也不适合在科研工作中报告。我们做以下变化:
# 先乘以100 tab1[2, ]/apply(tab1,2,sum)*100 1st 2nd 3rd 61.91950 42.96029 25.52891 # 保留2位小数 round(tab1[2, ]/apply(tab1,2,sum)*100,2) 1st 2nd 3rd 61.92 42.96 25.53
round()函数的功能是保留小数位数。
上面的代码中,第一个命令tab1[2, ]/apply(tab1,2,sum)*100 是需要保留小数的对象;
第二个命令2是指保留2位小数。
5)可是这个结果显然不对,加上百分号%才是准确的。需要用到paste()函数,该函数的功能是把各种元素连接起来,本例中,我们希望把数字和百分号连接:
paste(round(tab1[2, ]/apply(tab1,2,sum)*100,2),"%",sep="") "61.92%" "42.96%" "25.53%"
第一个命令round(tab1[2, ]/apply(tab1,2,sum)*100,2) 就是上面计算好的百分数的数字部分,这是要连接的第一部分;
第二个命令"%" 是要连接的第二部分;
第三个命令sep="" 指两个元素之间的连接符号,这里我们不需要任何连接符号,所以引号""之间什么都不用写。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31