
CDA数据分析师 出品
作者:Mika
数据:真达
【导读】今天教大家用Python分析《沉默的真相》的17万条弹幕。距离上一部国产良心剧《隐秘的角落》刷屏还不到2个月,“秃头梗”、“爬山梗”还让人记忆犹新。紧接着又一部爆款国产剧来了,那就是最近口碑炸裂的《沉默的真相》。
同样是来自爱奇艺针对悬疑短剧的“迷雾剧场”,《沉默的真相》根据紫金陈的小说《长夜难明》改编,讲述了检察官江阳历经多年,付出无数代价查清案件真相的故事。
开播当天《沉默的真相》在豆瓣开分8.8分,随着剧集的播出,该剧口碑势不可挡,一路走高,播出六集后,豆瓣评分冲到了9.2分,成功超越了它的前浪《隐秘的角落》。要知道,这种高开高走的趋势,在国产剧里是非常罕见的。
许多网友在最初刷剧时根本不信自己会哭,结果看到大结局才发现,这也太好哭了吧,看到主角江阳的舍命燃灯,真的让人哭出兰州拉面…
那么这部《沉默的真相》到底为什么口碑能高开暴走?凭什么成为年度压轴国剧? 今天我们就用Python来带你解读。
01、豆瓣 9.2分!超越前浪《隐秘的角落》
上一部被称为年度爆款国剧的还是《隐秘的角落》,改编自紫金陈的推理小说--《坏小孩》,《隐秘的角落》一经播出就带着"小白船","爬山梗","秃头梗"热闹了一整个夏天。
在豆瓣已有78万余人进行评分,最终收官8.9分,是非常惊艳的成绩。
谁知仅过去2个月,又一部悬疑剧《沉默的角落》凭借着逆天的口碑火了!同样改编自作者紫金陈的小说《长夜难明》,一开播豆瓣就达到8.8分。随着播出分数越来越高,如今已有20万余人评分,高达9.2分,已经超过了前浪《隐秘的角落》。
豆瓣总体评分分析
近一步分析观众评分,我们发现:
92.8%的观众给出了五星满分,这口碑在国产剧中已经达到标杆的水准。
豆瓣短评词云
然后我们再看到豆瓣的短评词云。
我们可以看到,观众在短评中讨论最多的就是主角"江阳",他的坚定和执着真可谓可歌可泣。"演员的演技","剧情",对"原著"的还原度,都得到了广泛的认可与好评。
02、刷剧《沉默的真相》,17万条弹幕都在说些什么
那么刷剧时,大家都在说些什么呢?接下来我们用Python分析了《沉默的真相》前10集的视频弹幕,共计173226条。
前十集弹幕走势图
从图中可以看到,看剧时大家都特别爱发弹幕,前十集中:弹幕数量最多分别是第9集,第3集和第10集,最多一集弹幕数为18903条,弹幕最少的是第六集,弹幕数为15561条。
接着我们再看看剧中主要角色的弹幕词云:
江阳弹幕词云
由白宇饰演的江阳,原本年轻有为,但是为了探求真相坚持正义,付出了自己的生命。像"正义"、"厉害"、"演技"等都在词云中频频出现。
李静弹幕词云
关于谭卓饰演的李静,在刷剧时很多人都会联想到她在《延禧攻略》中高贵妃的角色。无论是从“高贵妃”到《我不是药神》中的刘思慧,还是这次的李静,谭卓的演技都让人有目共睹。
严良弹幕词云
从最初官宣影帝廖凡,就有不少观众表示冲着廖凡也得看《沉默的真相》,果不其然,剧集一播出,粉丝就夸他是“免检产品”,妥妥的~
张超弹幕词云
饰演张超的宁理老师是迷雾剧场的老朋友了,之前在《无罪之证》中他演的社会"丰田哥"人狠话不多,"反向抽烟"实在是太深入人心了。从《无证之罪》到《隐秘的角落》,再到《沉默的真相》,严良都换了三个人了,真是流水的严良,铁打的李丰田。
03、手把手教你,如何用Python分析弹幕
我们使用Python获取并分析爱奇艺《沉默的真相》前十集的弹幕数据,整个数据分析的流程分为以下三个部分:
1. 数据获取
关于爱奇艺的弹幕数据获取程序之前文章中已经做过阐述。
2. 数据读入和预处理
首先导入所需包,其中pandas用于数据读入和数据处理,os用于文件操作,jieba用于中文分词,pyecharts和stylecolud用于数据可视化。
# 导入库 import os import jieba import pandas as pd from pyecharts.charts import Bar, Pie, Line, WordCloud, Page from pyecharts import options as opts from pyecharts.globals import SymbolType, WarningType WarningType.ShowWarning = False import stylecloud from IPython.display import Image
将爬取的数据存放在data文件夹下,使用os操作获取需要读取的csv文件列表并循环读入文件。
# 读入数据 data_list = os.listdir('../data/') df_all = pd.DataFrame() for i in data_list: if i.endswith('csv'): df_one = pd.read_csv(f'../data/{i}', engine='python', encoding='utf-8', index_col=0) df_all = df_all.append(df_one, ignore_index=False) print(df_all.shape)
(173226, 6)
弹幕数量一共有173226条,预览一下数据:
df_all['name'] = df_all.name.str.strip() df_all.head()
3. 数据可视化
——分集的弹幕数
代码解说:
repl_list = { '第一集 ': 1, '第二集': 2, '第三集': 3, '第四集': 4, '第五集': 5, '第六集': 6, '第七集': 7, '第八集': 8, '第九集': 9, '第十集': 10 } df_all['episodes_num'] = df_all['episodes'].map(repl_list) df_all.head()
# 产生数据 danmu_num = df_all.episodes_num.value_counts() danmu_num = danmu_num.sort_index() x_data = ['第' + str(i) + '集' for i in danmu_num.index] y_data = danmu_num.values.tolist() # 条形图 bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar1.add_xaxis(xaxis_data=x_data) bar1.add_yaxis('', y_axis=y_data) bar1.set_global_opts(title_opts=opts.TitleOpts(title='前十集的弹幕数走势图'), visualmap_opts=opts.VisualMapOpts(max_=20000, is_show=False) ) bar1.render()
x_data = ['第' + str(i) + '集' for i in danmu_num.index] y_data = danmu_num.values.tolist() # 条形图 bar1 = Bar(init_opts=opts.InitOpts(width='1350px', height='750px')) bar1.add_xaxis(xaxis_data=x_data) bar1.add_yaxis('', y_axis=y_data) bar1.set_global_opts(title_opts=opts.TitleOpts(title='前十集的弹幕数走势图'), visualmap_opts=opts.VisualMapOpts(max_=20000, is_show=False) ) bar1.render('../html/爱奇艺弹幕数走势图.html')
弹幕角色-江阳 词云图
# 定义分词函数 def get_cut_words(content_series): # 读入停用词表 stop_words = [] with open(r"stop_words.txt", 'r', encoding='utf-8') as f: lines = f.readlines() for line in lines: stop_words.append(line.strip()) # 添加关键词 my_words = ['廖凡', '严良', '白宇', '江阳', '谭卓', '李静', '宁理', '张超', '黄尧', '张晓倩', '奥利给' ] for i in my_words: jieba.add_word(i) # 自定义停用词 my_stop_words = ['真的', '这部', '这是', '一种', '那种', '啊啊啊', '哈哈哈', '哈哈哈哈', '我要'] stop_words.extend(my_stop_words) # 分词 word_num = jieba.lcut(content_series.str.cat(sep='。'), cut_all=False) # 条件筛选 word_num_selected = [i for i in word_num if i not in stop_words and len(i)>=2] return word_num_selected
# 获取分词结果 text1 = get_cut_words(content_series=df_all[df_all.name=='江阳']['content']) # 绘制词云图 stylecloud.gen_stylecloud(text=' '.join(text1), max_words=1000, collocations=False, font_path=r'C:\Windows\Fonts\msyh.ttc', icon_name='fas fa-heart', size=653, output_name='弹幕角色-江阳词云图.png')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-06-052025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27