
国庆长假出游热即将来临之际,中国文化和旅游部发布新规,10月1日起,在线旅游经营者不得滥用大数据分析等技术手段,侵犯旅游者合法权益。
一直困恼国内消费者的“大数据杀熟”事件,终于迎来曙光,虽然该规定目前只适用在旅游行业中,但却是一个很好的开头。
“大数据杀熟”究竟是啥
2018年天猫、京东等平台被指责有“大数据杀熟”嫌疑,即:同样的商品或服务,老客户看到的价格反而比新客户要贵出许多。
随着大数据分析技术蓬勃发展,经营者运用已有的大量数据,如:消费偏好、频率、习惯、收入等,分析客户购买力、对商品或服务需求的程度……
依据分析结果,将同一商品或服务以不同价格卖给不同的消费者,从而获得更大的利益。
互联网“大数据杀熟”起源
互联网“大数据杀熟”鼻祖是亚马逊,2000年,亚马逊启动了著名的差别定价实验,将部分DVD碟片对新顾客报价22.74美元,而对感兴趣的老顾客报价26.24美元。
这种销售方式产生了极佳的效果,但后来被老顾客发现,最终以亚马逊赔钱并道歉告终。
“大数据杀熟”常见形式
▷ 根据用户使用设备不同而差别定价,如:苹果与安卓用户定价不同;
▷ 根据用户消费场所不同而差别定价,如:给距离商场远的用户定价更高;
▷ 根据用户消费频率不同而差别定价,如:给消费频率高的用户定价更高。
怎样避开“大数据杀熟”
▶ 网购时,偶尔换新账号,查看价格变化情况;
▶ 货比三家,提防商户隐藏信息,多了解商品;
▶ 切勿轻易被商户锁定、被套牢。
“大数据杀熟”后话
——给卖家的话
大数据分析是为给消费者提供更好的服务,差异化定价应遵守底线,保证用户的知情权,以防危机品牌的名誉,造成忠实用户的流失。
——给买家的话
没有人能避开大数据,根据消费习惯、喜好等,在线平台会给每位消费者贴上千个标签。
不想被大数据“套牢”,就要“知己知彼”,我们要跟上大数据时代的步伐,就一定要注意培养自己的大数据分析思维。
CDA明星导师李奇老师表示,大数据分析是连接数据与人类认知之间的桥梁。
大数据分析是什么?
百度百科的定义,大数据分析,是为了提取有用信息和形成结论,而对数据加以详细研究和概括总结的过程。
简而言之,就是将数据(包括文本、音乐、文字、数字等)转化为知识、智慧的方法,如:朱朝阳日记中的内容也是数据。
拥有数据分析思维的人,想不发光发亮都很难。因此,随着大数据时代到来,以这种思维为基础形成了一个朝阳产业,倍受社会各界人士的青睐。
现今,各大企业对数据分析能力过硬的人才,需求量也越来越大,供不应求的市场导向,让这个新风口行业的从业者薪资普遍偏高。
给大家举个栗子
假如你是运营良好的淘宝服装店店长,你会及时掌握一天卖多少件商品、挣多少钱、哪个品牌卖的多、哪个品牌卖的少、哪种商品需补货、哪种颜色受欢迎等信息,以便做策略调整,保持竞争优势。
这就是了解情况。
积累一定数据后,你会发现一些规律,如:人群甲喜欢买圆领深色服装,而人群乙喜欢买宽松浅色服装,有人买A品牌后会购买B品牌短裤,有人浏览C页面后会对D品牌产生兴趣。
这就是数据挖掘。
于是,你将圆领深色服装推销给甲,将宽松浅色服装推销给乙,将B品牌短裤购买链接添加在A品牌购买页中,将D品牌促销优惠加到C页面,一番操作后商品销售量大幅提升。
这就是发现规律。
观察一段时间,你发现E品牌被浏览2-3次就能售出一件,于是你想办法增加E品牌点击次数,通过浏览量趋势来大致预测未来一段时间内销量的变化情况。
这就是预测将来。
大数据分析要具备啥能力?
如果你想进入大数据分析行业,成为该领域的佼佼者,下面这几块是优化方向,供大家参考!
▼
基础知识
与朱朝阳还没有完全成型的思维相比,数据分析师在数学知识的基础上,引入了统计学,其基础知识包含数学、线性代数、统计学等,这些也是决定数据分析职业发展高度的基石。
对于初级数据分析师,学习描述统计相关的内容和公式即可,但要更进一步就需掌握统计算法,甚至机器学习算法等更多知识,对于算法相关的工作,则要对高数进行深入学习。
▼
分析工具
Excel运用最广,是最容易入门的数据分析工具之一,函数、数据透视表和公式必须熟练掌握。
另外,具备一个专业统计分析技能更好,SPSS作为入门是极好滴。不过随着数据的增长,编程语言的学习,如Python等将会使数据处理变得更高效。
当然,只要和数据打交道,我们就会接触到数据库,所以要学SQL(数据库),掌握基本的增、删、改、查等技能。
最后,可以学写主流的利器,如Python或R,有些行业可能会用到SAS或其他工具,请依据自己的行业选择。
▼
业务/行业/商业知识
为摆脱嫌疑朱朝阳对数据进行清洗,数学家为解决难题收集数据……种种迹象能看出,脱离业务的纯数据分析没有任何意义,没行业背景的技术如空中楼阁。
别走进死胡同,想成为优秀的数据分析师或培养自己的数据分析思维, 首先要对业务了如指掌。
熟悉业务后再去获取需要的数据,对数据进行业务分析,制定出相应方案,这才是王道。
▼
沟通能力
数据分析会涉及到很多和业务部门、技术部门的沟通,做出报告后也需要进行展示,并说服别人接受自己的结果。
因此,协调沟通能力对于数据分析者而言,也是非常重要的素质之一。
▼
学习力
无论是数据分析,还是其他岗位,都需要有持续、快速学习的能力,学业务逻辑、行业知识、技术工具、分析框架……
END
大数据技术的出现,是为更好的服务于大众,而非欺骗忠实顾客,谋取高额利益的手段。建议消费者跟上时代的脚步,多了解大数据,培养大数据思维,从而明白如何维护自己的权益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28