
作者:豌豆花下猫
来源:Python猫
python 支持 lambda 匿名函数,其扩展的 BNF 表示法是lambda_expr ::= "lambda" [parameter_list] ":" expression,也就是lambda 参数序列:表达式。
这是一种便捷的函数定义方式,若翻译成我们熟知的函数形式,会是这个样子:
def (parameter_list): return expression
也就是说,python 中的 lambda 函数是一种可接收多个参数的函数,返回值是一个表达式。
它最大的好处是单行简洁,不需要函数命名与换行缩进。
不得不说,匿名函数有时候是挺好用的,比如下文会介绍到的一些常见用法,它因此受到了不少人的推崇。
但是,匿名函数通常也会造成代码难以阅读,容易被人滥用,再加上 Python 只提供了对它的“残疾的”支持,所以又有一些观点不建议使用匿名函数。
事实上,Python 之父 Guido van Rossum 就属于“不推荐使用派”,他甚至曾经(2005年)想要移除 lambda,只不过最后妥协了。
lambda 这一个由其他开发者贡献进来的特性(借鉴自 lisp 语言),存在了十多年,但是却被这门语言的创造者(兼首席设计师)所嫌弃,最后竟然还奇迹般地幸存了下来,对于这个故事,大家是否觉得挺有戏剧性的?
接下来,本文就仔细聊一聊这个处境尴尬却生命力顽强的 lambda 匿名函数吧!
1、lambda 怎么使用?
lambda 函数通常的用法是结合 map()、reduce()、filter()、sorted() 等函数一起使用,这些函数的共性是:都可以接收其它函数作为参数。
例如下面的几个例子:
my_list = [3, 1, 5, 4, 10] # 元素全加1,结果:[4, 2, 6, 5, 11] list(map(lambda i:i+1, my_list)) # 过滤小于10的元素,结果:[3, 1, 5, 4] list(filter(lambda i:i<10, my_list)) # 元素累加,结果:33 from functools import reduce reduce(lambda i,j:i+j, my_list, 10) # 字典按值排序,结果:[('b', 1), ('a', 3), ('d', 4), ('c', 5)] my_dict = {'a':3, 'b':1, 'c':5, 'd':4} sorted(my_dict.items(), key=lambda item:item[1])
初学者也许会觉得代码读不懂,但是只要记住“Python中的函数是一等公民”,知道一个函数可以被作为另一个函数的参数或者返回值,就容易理解了。
比如对于 map() 函数的例子,你可以理解成这个形式:
my_func = lambda i:i+1 list(map(my_func, my_list))
甚至可以还原成普通的函数:
def add_one(i): return i+1 list(map(add_one, my_list))
map() 函数的第一个参数是一个函数,第二个参数是一个可迭代对象。这第一个参数会迭代地调用第二个参数中的元素,调用的结果以迭代器的形式返回。
这个例子使用了 list(),是为了方便一次性取出迭代器中的元素,直观地展示出来,在实际使用中,很可能会是基于迭代器的形式。
由这几种用法,我们可以总结出 lambda 函数的使用规律:
2、lambda 有什么问题?
由上面的用法可以看出,使用 lambda 函数的代码比较紧凑简洁,所以有人称它体现了“Pythonic”的优雅思想。
但是,lambda 函数有没有什么缺陷呢?
有!当前的 lambda 函数有一个最大的问题,即只支持单行表达式,无法实现丰富的功能,例如无法在函数创建时使用语句(statement),无法使用 if-else 的判断条件,也无法使用 try-except 的异常捕获机制,等等。
这极大地限制了它的能力,导致了它被人诟病为“残疾的”。
从技术实现的角度上看, 这个问题可以通过语法层面的设计来解决。
在当年的邮件组讨论中,有人提出过一些解决思路,比如这封邮件:
出处:https://mail.python.org/pipermail/python-dev/2006-February/060654.html
它提出了一个lambda args::suite 的想法,支持写成这样的形式:
ss = sorted(seq, key=(lambda x:: try: return abs(x) except TypeError: return 0))
但是,Guido 很快就否决了这个思路。
他写了一篇文章《Language Design Is Not Just Solving Puzzles》来回应:
出处:https://www.artima.com/weblogs/viewpost.jsp?thread=147358
其基本观点是:不能光顾着解决一个问题/实现某种功能,就引入缺乏“Pythonicity”的语言设计。
那么,为什么 Guido 会认为这是一种不好的设计呢?
我试着概括一下,理由是:
简而言之,他认为简洁友好的用户体验更为重要,如果简洁的语法无法满足需求,就应该写成具名函数的形式,而非设计出复杂的匿名函数。
3、为什么 Guido 想移除 lambda?
上文提到的多行 lambda 语句(multi-statement lambda)事件发生在 2006 年,我们看到了 Guido 不想给 lambda 引入复杂设计的原因。
但是,早在 2005 年,Guido 就曾经想要从 Python 移除 lambda,他对它的“嫌弃”是一个“历史悠久”的传统……
在《The fate of reduce() in Python 3000》这篇短文中,Guido 提出要一次性移除 reduce()、map()、filter() 以及 lambda。
移除 lambda 的理由如下:
回顾一下我们在前文中总结出的 lambda 的 4 条使用规律,可以发现它跟几个高阶函数(可以接收其它函数作为参数的函数)有较强的“寄生关系”,如果它们能移除了的话,lambda 确实就没有什么独立存留的意义了。
那么,为什么 Guido 觉得应该移除那几个高阶函数呢?
主要的理由有:
总体而言,Guido 的想法暗合了《The Zen of Python》中的这一条:There should be one-- and preferably only one --obvious way to do it。
但是回到现实,为了照顾某些人的习惯,以及对兼容性的考虑,Guido 最后保守地放弃了“清理异端”的计划。
因此,lambda 得以从 Python 最高独裁者的手上死里逃生。直到一年后,它试图兴风作浪(多行表达式),却惨遭镇压。
我仿佛听到了 Guido 的内心 OS:当初我想删除东西的时候,你们百般阻挠,现在你们想添加东西,哼,没门!……
哈哈,开了个玩笑。
Guido 的所有决定都体现了他的 Pythonic 设计美学、自恰的逻辑一致性以及对社区声音的权衡。
对于 lambda,我认可他的观点,而通过回溯语法发展的历史,我觉得自己对于 Python 的理解变得更为丰富了。不知道你可有同感?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29