
大数据、云计算、互联网,这是时下最流行的词汇与话题。能否以及如何将这些新技术运用到城市节能上,是一个很大的启示和挑战。
在第十一届中外绿色人居论坛上,论坛组委会委员、美国能源基金会建筑项目主任、博士莫争春以纽约为例向大家展示了一种可供参考的方向:以行政命令管理的手段,统计城市建筑能耗信息,并全部公开分享,鼓励市场参与数据分析,共同提升城市建筑能效。
莫争春在接受《第一财经日报》记者专访时表示,建筑能耗数据的公开与对标对于城市节能可以起到很大的推进作用,这首先是观念的问题,而非技术问题。
心中有“数”
世界正处于大数据时代。从纷繁复杂、不断爆炸的数据中寻找出任何有效的信息并加以利用,正成为一种共识。
在莫争春看来,国家在制定任何节能政策之前,关键也在于要知道自身的能源数据,要知道自己的“家底有多少”,做到心中有数。但实际上,在建筑行业方面,我国并没有清晰的数据,如何做到心中有数?
当前,国内绝大多数有关建筑能耗的研究及数据统计都只是针对单个建筑,缺乏对城市整体的统计。
莫争春对本报记者表示,虽然现在我国很多省市在做建筑信息能耗监测平台,但并没有哪个城市能确切把所有的建筑能耗搞清楚,也没有哪个城市把收集到的信息加以利用。“我们现在只是把数据收集起来,用图表现出来,但是这不是目标,我们的目标是利用这些信息来做节能。”
由于在中美两国节能领域工作了20余年,莫争春对两国的节能现状非常了解。他认为美国纽约在利用大数据进行城市节能方面有着突出表现。
纽约前市长迈克尔·布隆伯格曾提出纽约到2030年减排30%,而70%的能耗在建筑。为了完成这个目标,迈克尔·布隆伯格就必须摸清大部分建筑的能耗现状,才能对症下药。
据莫争春介绍,迈克尔·布隆伯格通过议会立法,最后要求采取强制性的方式,所有5000平方米以上的建筑,必须将能耗数据公开,否则将会受到相应的惩罚。他只花了2年时间,就掌握了纽约市所有5000平方米以上的建筑(包括住宅和公共建筑)的能耗数据,并能根据能耗强度将纽约市划分区域,由此有针对性地进行节能。
开放与市场化
数据公开的好处在于充分的市场化,可以发动全社会的力量共同推进城市节能。
仍然以纽约为例,迈克尔·布隆伯格的做法催生了一批优质的建筑能效服务公司,创造了新型能耗行业。城市建筑能耗数据需要进行审计,迈克尔·布隆伯格并没有事先设置行政许可,而是放开让市场去做,最终通过市场的力量催生优质的审计公司。
莫争春还介绍,在美国能源部官网上关于所有的住宅、商业建筑、能源供应等相关数据都对外公开,而且政府鼓励公众使用这些数据,尤其是开展竞赛,看谁能够开发更好的使用工具,把公布的数据开发利用得更好,给予奖励。
目前,美国已经出现了大批能源数据分析公司,都是基于上述公开信息做的。也正是由于信息的公开,美国今年有10个城市正在进行着一场信息公开和对标的比赛。
在莫争春看来,基于公共信息分析产生的策略才是城市发展之路。传统模式中,政府控制了绝大部分信息,主导着市场,而封闭、隔离的“信息孤岛”是形成大数据的障碍。现在需要一种新模式,即政府让这些信息在市场中流动,让市场利用信息催生新服务。
“在大数据时代,我们需要的不光是新的节能战略,而是信息的共享。”莫争春表示,公共信息的共享是大数据的起点,这个取决于决策者是否有决心去做。决策者需要意识到能耗数据的公开和对标对推动城市节能会起到很大的作用,而不是将其作为一种隐私或者国家安全问题而保持封闭。
说到底,就是政府需要转变职能,建立、监督、完善能耗公开制度,让市场去做功。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28