
如何进行实用行业研究与行业分析
老规矩,来个图文并茂基于欧洲某行的分析方法。写之前需要说明:不同机构不同方法,有时候区别可以很大(买方或卖方),同一个机构不同部门都有可能有不同的方法(equity或credit,对内的或对外的)。同时,行业分析本身比较复杂,一两句不好说清楚。
这里我从银行的角度来简单介绍其中一种:这个框架和逻辑适用于大部分行业的基本分析,基于从业经历,非教科书。有时间会逐步更新,尽量多加点干货。
PS:个人感受,如果想很懂这个行业,最好与这个行业的从业者,金融类长期跟进这个行业的人(比如一直跟进某些行业的客户经理或者信贷部门的credit officer),或专做某些行业研究的人多聊聊。他们有时候一句话胜读十年书,可以让你的行研报告很出彩,也有很多独特的经历看书是永远找不到的。
1. 一个行业中长期来看会往哪个方向走(forward-looking)
比如金属采矿行业:铝:国外市场供需慢慢平衡,国内大部分区域继续供应过剩,价格影响;铜:中期来看供应过剩,对于部分效率低的采矿企业,价格或低于cash cost
2. 识别出这个行业的关键风险和成功的驱动因素:
比如矿企:市场价格风险,成本风险,对冲风险,高资本支出(high CapEx/ cost overrun),政治风险,流动性风险等
再比如石油与天然气:政治风险,泄露风险,变差的fiscal terms,大宗商品价格波动性,特殊事件,环保,项目风险(油砂,深水),高度资本密集性和周期性等
3. 这个行业成功的企业和失败的企业大概都有哪些,为什么?
完全不想大方向,说明态度有问题。还有一点就是见过一些银行的初级分析师,连某些行业上下游都没分清楚呢就开始动笔分析了(某些大宗商品行业),搞笑么?多少想一想,了解一下这个行业的大概情况,起码搞清楚是驴还是马,然后再着手写报告。
行业分析基本的框架主要有四点组成(强调,是分析框架,不是写报告的顺序):
######1.1 经济周期######
经济周期是自然的经济波动,表现为经济的扩张与收缩。根据一些关键指标可以分析出目前处于经济周期的哪个阶段,见下图:
结合行业,我们主要划分为两类:
Non-Cyclical 非周期性行业(平时生活必须的 – Necessity):如电力(没电看不了电视),供水(没水冲不了厕所),FMCG(快消)类等
Cyclical 周期性行业(不是平时生活必须的 – Discretionary):这种行业波动性较强,与经济周期的相关性高,当整体周期处于上升阶段的时候,这个行业往往发展的比较好,如汽车(没奔驰可以开夏利,没夏利可以骑自行车),旅游(不出远门可以去家旁边的街心公园),高端时装(这辈子没穿过就),航空(与旅游等行业相关)等。
周期性行业又可以细分为两类,主要取决于这个行业被周期影响的时间点(早或晚):
早期的:如汽车,房地产(经济的波动或拐点会比较快的影响到这些行业)
晚期的:如技术
值得一提的是,行业又是通过产业链相互连接的,如下图展示的钢铁(高度周期性行业):
关于这方面的”课本”,推荐一本标准普尔(S&P)出的书(企业信用分析基础):Fundamentals of Corporate Credit Analysis
信贷周期与经济周期类似,主要分两个阶段:
增长阶段:表现为利率低,贷款条件比较灵活自由等(e.g. 个人或企业容易从银行借钱)
收缩阶段:上升的利率,贷款条件严苛等(银行翻脸不认人了)
收缩阶段往往持续到商业信心开始恢复,金融机构对经济增长前景重回乐观。
放一个近些年信贷周期的图例来说明(1990-2007危机前):
看了大方向,下面分析行业与企业。题外话:我一直觉得搞行业研究不容易,因为不光需要对宏观经济有一定了解,最好还要能看懂大部分的公司财务等。这是一个相当的知识与经验积累的过程。而且,很多大型银行内部做行业研究或组合管理的人有时候还要对自己银行的产品组合,整体风险胃口有了解,将这些维度都联系在一起,是挺有挑战性的工作。
商业风险主要指的是企业因为不确定性导致的利润减少甚至亏损的风险,如:
个人觉得,这一块主要是基于对个体企业的分析与理解,转为对宏观行业的分析与总结(我觉得做行业分析的人最好也有一定的企业财务等分析的基础)。可以参看我的另一篇文章,里面谈到了比较具体的企业信用分析方法:AlphaGo 的数据算法,能否用来分析银行信贷企业的各项数据,然后得出关键指标和权重? – 钱粮胡同的回答。
用图来总结的话,大致如下:
这里有两个小建议:
1:因为题主问的是初入金融行业,所以我推荐可以去参考一些企业或银行的债权募集说明书看一看,里面的基本分析和框架可以借鉴,有价值。
2:还有就是,个人经验,不要拿来就用各行业高度概括的数据(aggregate data)分析行业的财务等指标,土方法是自己亲自做几个同行业企业的财务分析(自己选几个同行业的公司,上市的发债的都可以,网上下年报或审计报告),做着做着对这个行业的感觉就来了(peer comparison的思路)。有时候一份好的审计报告或年报,可以学到不少这个行业的干货。
识别行业的价值与驱动因素,更好的了解行业。一般可以从价值链的角度分析:
价值链不同环节的重要性和整合性因行业不同而不同。驱动因素的识别主要去看哪一个环节对于这个行业的利润增长有最大的影响。如奢侈品类时装的驱动因素包括:可支配收入及品牌(营销);一般类时装品牌的驱动因素则集中于成本控制与效率(供应链管理,存货管理,分销渠道等)。再比如矿企,自有矿藏是否充裕,质量如何等等。
这一块我不是行家,不班门弄斧了,建议多与这个行业的参与者交流。
需要说明的是:这里我们谈到的企业价值对于权益类来说很重要,对于信贷来说现金流更重要。
现金流这块主要是从银行角度看的。影响现金流的因素取决于行业的特征,如应付和应收账款类驱动因素是由行业特征和运营方式等决定的,如:
有强势地位的企业:长期且宽松的支付条款,导致大规模的应付帐款,现金流或变好
某些细分行业:Daewoo(大宇造船),周期长,客户少,导致客户支付条款苛刻,应收高,现金流或变差
其他影响现金流的因素还包括:存货,资本支出 (CapEx),SG&A费用,预收预付款等。
这些都需要具体行业具体分析,不能一概而论。举个简单的例子就是:同样都是现金流,大宗商品贸易公司(Commodity Trader)的现金流(银行更多的用作sanity check)与一个传统制造业企业的现金流是没有可比性的。
考虑了上面的因素后,一个简单的行业分析报告包括(这次不是框架了,是写报告的顺序):
当前的经济与行业发展:包括一些与行业关系较大的经济指标变动,相关法律法规的变化等,宏观角度
行业前景与趋势:可以分各个子行业来分析一些供需指标,利润边际,市场份额等,比如汽车类的话可以分Light Vehicles, Trucks, Auto Suppliers and Tyres来逐一分析
财务特征:行业整体利润率,资产负债表的稳健度,重点企业的股价与债券情况(如maturity),外部评级(三大和中国本土的),对应的CDS(信用违约互换)走势(如果有的话),近期行业收并购的情况,ABS(比如汽车行业的次级资产支持证券,这块目前发行最大的应该是福特汽车)等等。
行业特征:根据子分类,比如石油行业分整合型(IOM),国家型(NOC),独立(E&P),冶炼与分销(R&M)及服务(OFS)等,可以有个大概的风险收益评估。
总之,行业分析复杂,一两句话无法说全面。这里仅提供分析的框架和思考的角度,之后有时间再更新。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29