
数据科学家也良莠不齐 蹩脚数据科学家的10个迹象
1.优秀的数学家可以成为顶尖的数据科学家,但光是会在笔记本上写公式可不行,他们还必须熟练地运用计算机来处理数据。
2.如果他们的所有经验都来自学术机构,当他们面对现实问题时,可能会束手无策。寻找有实践经验的人,不要在这方面妥协。
3.对数据科学的热情以及掌握一定的技能,这是成功的关键。如果你只是假装有兴趣,或者并不具备重要的技能,总有一天,你会原形毕露。
如今,数据科学家已是炙手可热,那些曾经对其毫无所知的企业,眼下也开始在全世界搜寻最好的数据科学家。问题在于,优秀数据科学家的标准是什么?和其他东西一样,数据科学家也是良莠不齐,招聘他们是一项重要的投资,如果选了个“次品”,你会付出沉重的代价。凭借一批出色的数据科学家,Facebook为自己的社交媒体平台注入了富有创造力的新功能,令用户为之兴奋。
过去10年里,数据呈现爆炸式增长。大数据扑面而来,普通人很难弄懂它的含意,更别提加以利用了。但数据科学家能从中提取出有价值的信息。对一家公司来说,数据科学家的雇用成本很高,由于这方面的人才供不应求,他们的薪水会迅速上涨。
在当今这个时代,解雇员工同样代价不菲,错误的招聘会使你的公司倒退几个月。所以,在寻找优秀的数据科学家时,你也应该警惕蹩脚数据科学家的迹象。如果发现以下10个迹象中的任何一个,你都应该迅速远离。
1. 糟糕的数学背景
许多计算机专家和程序员都会把自己说成是数据科学家,但实际上,真正出色的数据科学家通常拥有数学背景。优秀的数学家可以成为最好的数据科学家,但数学不好的程序员不行。蹩脚的数学家无法有效地分析数据,而这恰恰是数据科学家的首要任务。
2. 计算机知识贫乏
没错,优秀的数学家可以成为顶尖的数据科学家,但光是会在笔记本上写公式可不行,他们还必须熟练地运用计算机来处理数据,要熟悉Spark和其他系统。如果你的数据科学家坚持要求配一名助手,因为他用不来电脑,那么你应该继续寻找,去雇用其他人。
3. 没有全能型人才
一个人集统计学家、开发员、数学家和其他身份于一身,并不意味着他能成为一名数据科学家。几乎可以肯定的是,他拥有跨领域知识,能够根据不同的职位需求来推销自己。他也许什么都会,但可能什么都不精。
4. 纯粹的学术派
你需要有实践经验的人。如果他们的所有经验都来自学术机构,当他们面对现实问题时,可能会束手无策。寻找有实践经验的人,不要在这方面妥协。
5. 缺乏团队精神
数据科学家将和其他人共事,所以你不会想要一个不合群的人,即便他再怎么聪颖过人。数据科学家应该真正地融入团队,了解整体情况,做出全面改进。而如果他们不能和其他人融洽相处,就做不到这一点。
6. 缺乏商业知识
数据科学家不能只会运用理论。他们还要重视经过验证的技巧,运用可靠的传统方法。这些都来自于实践经验。
数据科学家需要参加商务会议,通过演示向高级管理层阐述分析结果。因此,在雇用一名数据科学家之前,要确保他拥有一定的商业知识,这一点非常重要。
7. 不熟悉工具
你面前的那个人拥有丰富的技术知识,但他们能否运用这些知识?如果他们没有实际运用过SAS、R、Scala、Python或其他计算机语言,他们可能只会像一个“绣花枕头”,中看不中用。
他们必须能够利用工具来阐释和转化信息流。
8. SAS成瘾者
有些SAS开发人员会把自己包装成数据科学家,但他们不是。数据科学家应该掌握多项技能,对于某个具体的问题,他们可以运用多种不同的系统。而蹩脚的数据科学家在遇到任何问题时,都只会采用同一种技能,他们希望用一种语言就能解决所有问题,这是不切实际的。
9. 没有理科学位
这是个不好的迹象,因为数据科学属于理科范畴。你也可能自学成才,但如果有人能秉持科学原则,并且掌握了分析学的一般性应用,还毕业于名牌大学,此人更有可能给企业带来价值。最好能拥有硕士学位。如果在其他领域还拥有一技之长,此人将是一只潜力股。
10. 不会用通俗语言来解释
数据科学家应该能用通俗易懂的日常用语来解释最复杂的问题,不能与现实世界脱节,这会导致你的解决方案无法被人理解,而且你需要花费一定的时间和精力来克服语言障碍。
虽然有很多重要的数据科学技能可以后天习得,但有些却是天生的。那些妨碍你进入数据科学领域的因素常常无法改变或纠正。对数据科学的热情以及掌握一定的技能,这是成功的关键。如果你只是假装有兴趣,或者并不具备重要的技能,总有一天,你会原形毕露。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07